Correct outdated object size limit
The comment here about 48 bit addresses being enough was written in 2016 but was made incorrect in 2019 by 5-level paging, and then persisted for another 5 years before being noticed and corrected.
The bolding of the "exclusive" part is merely to call attention to something I missed when reading it and doublechecking the math.
try-job: i686-msvc
try-job: test-various
When we have two types with the same name, one without type parameters and the other with type parameters and a derive macro, we were before incorrectly suggesting to remove type parameters from the former, which ICEd because we were suggesting to remove nothing. We now gate against this.
The output is still not perfect. E0107 should explicitly detect this case and provide better context, but for now let's avoid the ICE.
Implement a Method to Seal `DiagInner`'s Suggestions
This PR adds a method on `DiagInner` called `.seal_suggestions()` to prevent new suggestions from being added while preserving existing suggestions.
This is useful because currently there is no way to prevent new suggestions from being added to a diagnostic. `.disable_suggestions()` is the closest but it gets rid of all suggestions before and after the call.
Therefore, `.seal_suggestions()` can be used when, for example, misspelled keyword is detected and reported. In such cases, we may want to prevent other suggestions from being added to the diagnostic, as they would likely be meaningless once the misspelled keyword is identified. For context: https://github.com/rust-lang/rust/pull/129899#discussion_r1741307132
To store an additional state, the type of the `suggestions` field in `DiagInner` was changed into a three variant enum. While this change affects files across different crates, care was taken to preserve the existing code's semantics. This is validated by the fact that all UI tests pass without any modifications.
r? chenyukang
Rollup of 4 pull requests
Successful merges:
- #123436 (linker: Allow MSVC to use import libraries following the Meson/MinGW convention)
- #130410 (Don't ICE when generating `Fn` shim for async closure with borrowck error)
- #130412 (Don't ICE when RPITIT captures more method args than trait definition)
- #130436 (Ignore reduce-fadd-unordered on SGX platform)
r? `@ghost`
`@rustbot` modify labels: rollup
Rescope temp lifetime in if-let into IfElse with migration lint
Tracking issue #124085
This PR shortens the temporary lifetime to cover only the pattern matching and consequent branch of a `if let`.
At the expression location, means that the lifetime is shortened from previously the deepest enclosing block or statement in Edition 2021. This warrants an Edition change.
Coming with the Edition change, this patch also implements an edition lint to warn about the change and a safe rewrite suggestion to preserve the 2021 semantics in most cases.
Related to #103108.
Related crater runs: https://github.com/rust-lang/rust/pull/129466.
Fix `clippy::useless_conversion`
Self-explanatory. Probably the last clippy change I'll actually put up since this is the only other one I've actually seen in the wild.
Simplify some nested `if` statements
Applies some but not all instances of `clippy::collapsible_if`. Some ended up looking worse afterwards, though, so I left those out. Also applies instances of `clippy::collapsible_else_if`
Review with whitespace disabled please.
Correctly handle stability of `#[diagnostic]` attributes
This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.
r? `@compiler-errors`
Arbitrary self types v2: pointers feature gate.
The main `arbitrary_self_types` feature gate will shortly be reused for a new version of arbitrary self types which we are amending per [this RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md). The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer support from the current `arbitrary_self_types` feature. We expect this to cause some amount of breakage for crates using this unstable feature to allow raw pointer self types. If that's the case, we want to know about it, and we want crate authors to know of the upcoming changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine that use of raw pointers as self types is common, then we may maintain that as an unstable feature even if we come to stabilize the rest of the `arbitrary_self_types` support in future. If we don't hear that this PR is causing breakage, then perhaps we don't need it at all, even behind an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
Suggest `impl Trait` for References to Bare Trait in Function Header
Fixes#125139
This PR suggests `impl Trait` when `&Trait` is found as a function parameter type or return type. This makes use of existing diagnostics by adding `peel_refs()` when checking for type equality.
Additionaly, it makes a few other improvements:
1. Checks if functions inside impl blocks have bare trait in their headers.
2. Introduces a trait `NextLifetimeParamName` similar to the existing `NextTypeParamName` for suggesting a lifetime name. Also, abstracts out the common logic between the two trait impls.
### Related Issues
I ran into a bunch of related diagnostic issues but couldn't fix them within the scope of this PR. So, I have created the following issues:
1. [Misleading Suggestion when Returning a Reference to a Bare Trait from a Function](https://github.com/rust-lang/rust/issues/127689)
2. [Verbose Error When a Function Takes a Bare Trait as Parameter](https://github.com/rust-lang/rust/issues/127690)
3. [Incorrect Suggestion when Returning a Bare Trait from a Function](https://github.com/rust-lang/rust/issues/127691)
r? ```@estebank``` since you implemented #119148
Remove `#[macro_use] extern crate tracing`, round 4
Because explicit importing of macros via use items is nicer (more standard and readable) than implicit importing via #[macro_use]. Continuing the work from #124511, #124914, and #125434. After this PR no `rustc_*` crates use `#[macro_use] extern crate tracing` except for `rustc_codegen_gcc` which is a special case and I will do separately.
r? ```@jieyouxu```
Get rid of `predicates_defined_on`
This is the uncontroversial part of #129532. This simply inlines the `predicates_defined_on` into into `predicates_of`. Nothing should change here logically.
Stop storing a special inner body for the coroutine by-move body for async closures
...and instead, just synthesize an item which is treated mostly normally by the MIR pipeline.
This PR does a few things:
* We synthesize a new `DefId` for the by-move body of a closure, which has its `mir_built` fed with the output of the `ByMoveBody` MIR transformation, and some other relevant queries.
* This has the `DefKind::ByMoveBody`, which we use to distinguish it from "real" bodies (that come from HIR) which need to be borrowck'd. Introduce `TyCtxt::is_synthetic_mir` to skip over `mir_borrowck` which is called by `mir_promoted`; borrowck isn't really possible to make work ATM since it heavily relies being called on a body generated from HIR, and is redundant by the construction of the by-move-body.
* Remove the special `PassManager` hacks for handling the inner `by_move_body` stored within the coroutine's mir body. Instead, this body is fed like a regular MIR body, so it's goes through all of the `tcx.*_mir` stages normally (build -> promoted -> ...etc... -> optimized) ✨.
* Remove the `InstanceKind::ByMoveBody` shim, since now we have a "regular" def id, we can just use `InstanceKind::Item`. This also allows us to remove the corresponding hacks from codegen, such as in `fn_sig_for_fn_abi` ✨.
Notable remarks:
* ~~I know it's kind of weird to be using `DefKind::Closure` here, since it's not a distinct closure but just a new MIR body. I don't believe it really matters, but I could also use a different `DefKind`... maybe one that we could use for synthetic MIR bodies in general?~~ edit: We're doing this now.
The main `arbitrary_self_types` feature gate will shortly be reused for
a new version of arbitrary self types which we are amending per [this
RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md).
The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer
support from the current `arbitrary_self_types` feature.
We expect this to cause some amount of breakage for crates using this
unstable feature to allow raw pointer self types. If that's the case, we
want to know about it, and we want crate authors to know of the upcoming
changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine
that use of raw pointers as self types is common, then we may maintain
that as an unstable feature even if we come to stabilize the rest of the
`arbitrary_self_types` support in future. If we don't hear that this PR
is causing breakage, then perhaps we don't need it at all, even behind
an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
Remove redundant flags from `lower_ty_common` that can be inferred from the HIR
...and then get rid of `lower_ty_common`.
r? ``@fmease`` or re-roll if you're busy!
Print the generic parameter along with the variance in dumps.
This allows to make sure we are testing what we think we are testing.
While the tests are correct, I discovered that opaque duplicated args are in the reverse declaration order.
Given `trait Any: 'static` and a `struct` with a `Box<dyn Any + 'a>` field, point at the `'static` bound in `Any` to explain why `'a: 'static`.
```
error[E0478]: lifetime bound not satisfied
--> f202.rs:2:12
|
2 | value: Box<dyn std::any::Any + 'a>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
note: lifetime parameter instantiated with the lifetime `'a` as defined here
--> f202.rs:1:14
|
1 | struct Hello<'a> {
| ^^
note: but lifetime parameter must outlive the static lifetime
--> /home/gh-estebank/rust/library/core/src/any.rs:113:16
|
113 | pub trait Any: 'static {
| ^^^^^^^
```
Partially address #33652.
Use shorthand field initialization syntax more aggressively in the compiler
Caught these when cleaning up #129344 and decided to run clippy to find the rest
Use `bool` in favor of `Option<()>` for diagnostics
We originally only supported `Option<()>` for optional notes/labels, but we now support `bool`. Let's use that, since it usually leads to more readable code.
I'm not removing the support from the derive macro, though I guess we could error on it... 🤔
Minor Refactor: Remove a Redundant Conditional Check
The existing code checks `where_bounds.is_empty()` twice when
it can be combined into one. Now, after combining, the refactored code reads
better and feels straightforward.
The diff doesn't make it clear. So, the current code looks like this:
``` rust
if !where_bounds.is_empty() {
err.help(format!(
"consider introducing a new type parameter `T` and adding `where` constraints:\
\n where\n T: {qself_str},\n{}",
where_bounds.join(",\n"),
));
}
let reported = err.emit();
if !where_bounds.is_empty() {
return Err(reported);
}
```
The proposed changes:
``` rust
if !where_bounds.is_empty() {
err.help(format!(
"consider introducing a new type parameter `T` and adding `where` constraints:\
\n where\n T: {qself_str},\n{}",
where_bounds.join(",\n"),
));
let reported = err.emit();
return Err(reported);
}
err.emit();
```
Shrink `TyKind::FnPtr`.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and `FnHeader`, which can be packed more efficiently. This reduces the size of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms. This reduces peak memory usage by a few percent on some benchmarks. It also reduces cache misses and page faults similarly, though this doesn't translate to clear cycles or wall-time improvements on CI.
r? `@compiler-errors`
Store `do_not_recommend`-ness in impl header
Alternative to #128674
It's less flexible, but also less invasive. Hopefully it's also performant. I'd recommend we think separately about the design for how to gate arbitrary diagnostic attributes moving forward.
Differentiate between methods and associated functions in diagnostics
Accurately refer to assoc fn without receiver as assoc fn instead of methods. Add `AssocItem::descr` method to centralize where we call methods and associated functions.
Cache supertrait outlives of impl header for soundness check
This caches the results of computing the transitive supertraits of an impl and filtering it to its outlives obligations. This is purely an optimization to improve https://github.com/rust-lang/rust/pull/124336.
Accurately refer to assoc fn without receiver as assoc fn instead of methods.
Add `AssocItem::descr` method to centralize where we call methods and associated functions.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and
`FnHeader`, which can be packed more efficiently. This reduces the size
of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms.
This reduces peak memory usage by a few percent on some benchmarks. It
also reduces cache misses and page faults similarly, though this doesn't
translate to clear cycles or wall-time improvements on CI.
The existing code check for `where_bounds.is_empty()` twice when
it can be combined into one. Moreover, the refactored code reads
better and feels straightforward.
minor `effects` cleanups
* remove the fixme comment about not needing defaults because it turns out we do need defaults (if I made it None instead it would ice a bunch of tests)
* remove the part that special cased trait args when lowering them. This is now historical because effects doesn't add host args to traits anymore (we use associated types now)
Fix ICE Caused by Incorrectly Delaying E0107
Fixes #128249
For the following code:
```rust
trait Foo<T> {}
impl Foo<T: Default> for u8 {}
```
#126054 added some logic to delay emitting E0107 as the names of associated type `T` in the impl header and generic parameter `T` in `trait Foo` match.
But it failed to ensure whether such unexpected associated type bounds are coming from a impl block header. This caused an ICE as the compiler was delaying E0107 for code like:
```rust
trait Trait<Type> {
type Type;
fn method(&self) -> impl Trait<Type: '_>;
}
```
because it assumed the associated type bound `Type: '_` is for the generic parameter `Type` in `trait Trait` since the names are same.
This PR adds a check to ensure that E0107 is delayed only in the context of impl block header.
Tweak type inference for `const` operands in inline asm
Previously these would be treated like integer literals and default to `i32` if a type could not be determined. To allow for forward-compatibility with `str` constants in the future, this PR changes type inference to use an unbound type variable instead.
The actual type checking is deferred until after typeck where we still ensure that the final type for the `const` operand is an integer type.
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
turn `invalid_type_param_default` into a `FutureReleaseErrorReportInDeps`
`````@rust-lang/types````` I assume the plan is still to disallow this? It has been a future-compat lint for a long time, seems ripe to go for hard error.
However, turns out that outright removing it right now would lead to [tons of crater regressions](https://github.com/rust-lang/rust/pull/127655#issuecomment-2228285460), so for now this PR just makes this future-compat lint show up in cargo's reports, so people are warned when they use a dependency that is affected by this.
Fixes https://github.com/rust-lang/rust/issues/27336 by removing the feature gate (so there's no way to silence the lint even on nightly)
CC https://github.com/rust-lang/rust/issues/36887
Delegation: support generics for delegation from free functions
(The PR was split from https://github.com/rust-lang/rust/pull/123958, explainer - https://github.com/Bryanskiy/posts/blob/master/delegation%20in%20generic%20contexts.md)
This PR implements generics inheritance from free functions to free functions and trait methods.
#### free functions to free functions:
```rust
fn to_reuse<T: Clone>(_: T) {}
reuse to_reuse as bar;
// desugaring:
fn bar<T: Clone>(x: T) {
to_reuse(x)
}
```
Generics, predicates and signature are simply copied. Generic arguments in paths are ignored during generics inheritance:
```rust
fn to_reuse<T: Clone>(_: T) {}
reuse to_reuse::<u8> as bar;
// desugaring:
fn bar<T: Clone>(x: T) {
to_reuse::<u8>(x) // ERROR: mismatched types
}
```
Due to implementation limitations callee path is lowered without modifications. Therefore, it is a compilation error at the moment.
#### free functions to trait methods:
```rust
trait Trait<'a, A> {
fn foo<'b, B>(&self, x: A, y: B) {...}
}
reuse Trait::foo;
// desugaring:
fn foo<'a, 'b, This: Trait<'a, A>, A, B>(this: &This, x: A, y: B) {
Trait::foo(this, x, y)
}
```
The inheritance is similar to the previous case but with some corrections:
- `Self` parameter converted into `T: Trait`
- generic parameters need to be reordered so that lifetimes go first
Arguments are similarly ignored.
---
In the future, we plan to support generic inheritance for delegating from all contexts to all contexts (from free/trait/impl to free/trait /impl). These cases were considered first as the simplest from the implementation perspective.
Add `select_unpredictable` to force LLVM to use CMOV
Since https://reviews.llvm.org/D118118, LLVM will no longer turn CMOVs into branches if it comes from a `select` marked with an `unpredictable` metadata attribute.
This PR introduces `core::intrinsics::select_unpredictable` which emits such a `select` and uses it in the implementation of `binary_search_by`.
Don't record trait aliases as marker traits
Don't record `#[marker]` on trait aliases, since we use that to check for the (non-presence of) associated types and other things which don't make sense of trait aliases. We already enforce this attr is only applied to a trait.
Also do the same for `#[const_trait]`, which we also enforce is only applied to a trait. This is a drive-by change, but also worthwhile just in case.
Fixes#127222
Since https://reviews.llvm.org/D118118, LLVM will no longer turn CMOVs
into branches if it comes from a `select` marked with an `unpredictable`
metadata attribute.
This PR introduces `core::intrinsics::select_unpredictable` which emits
such a `select` and uses it in the implementation of `binary_search_by`.
Support ?Trait bounds in supertraits and dyn Trait under a feature gate
This patch allows `maybe` polarity bounds under a feature gate. The only language change here is that corresponding hard errors are replaced by feature gates. Example:
```rust
#![feature(allow_maybe_polarity)]
...
trait Trait1 : ?Trait { ... } // ok
fn foo(_: Box<(dyn Trait2 + ?Trait)>) {} // ok
fn bar<T: ?Sized + ?Trait>(_: &T) {} // ok
```
Maybe bounds still don't do anything (except for `Sized` trait), however this patch will allow us to [experiment with default auto traits](https://github.com/rust-lang/rust/pull/120706#issuecomment-1934006762).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727)
Make it crystal clear what lint `type_alias_bounds` actually signifies
This is part of my work on https://github.com/rust-lang/rust/labels/F-lazy_type_alias ([tracking issue](#112792)).
---
To recap, the lint `type_alias_bounds` detects bounds on generic parameters and where clauses on (eager) type aliases. These bounds should've never been allowed because they are currently neither enforced[^1] at usage sites of type aliases nor thoroughly checked for correctness at definition sites due to the way type aliases are represented in the compiler. Allowing them was an oversight.
Explicitly label this as a known limitation of the type checker/system and establish the experimental feature `lazy_type_alias` as its eventual proper solution.
Where this becomes a bit tricky (for me as a rustc dev) are the "secondary effects" of these bounds whose existence I sadly can't deny. As a matter of fact, type alias bounds do play some small roles during type checking. However, after a lot of thinking over the last two weeks I've come to the conclusion (not without second-guessing myself though) that these use cases should not trump the fact that these bounds are currently *inherently broken*. Therefore the lint `type_alias_bounds` should and will continue to flag bounds that may have subordinate uses.
The two *known* secondary effects are:
1. They may enable the use of "shorthand" associated type paths `T::Assoc` (as opposed to fully qualified paths `<T as Trait>::Assoc`) where `T` is a type param bounded by some trait `Trait` which defines that assoc ty.
2. They may affect the default lifetime of trait object types passed as a type argument to the type alias. That concept is called (trait) object lifetime default.
The second one is negligible, no question asked. The first one however is actually "kinda nice" (for writability) and comes up in practice from time to time.
So why don't I just special-case trait bounds that "define" shorthand assoc type paths as originally planned in #125709?
1. Starting to permit even a tiny subset of bounds would already be enough to send a signal to users that bounds in type aliases have been legitimized and that they can expect to see type alias bounds in the wild from now on (proliferation). This would be actively misleading and dangerous because those bounds don't behave at all like one would expect, they are *not real*[^2]!
1. Let's take `type A<T: Trait> = T::Proj;` for example. Everywhere else in the language `T: Trait` means `T: Trait + Sized`. For type aliases, that's not the case though: `T: Trait` and `T: Trait + ?Sized` for that matter do neither mean `T: Trait + Sized` nor `T: Trait + ?Sized` (for both!). Instead, whether `T` requires `Sized` or not entirely depends on the definition of `Trait`[^2]. Namely, whether or not it is bounded by `Sized`.
2. Given `type A<T: Trait<AssocA = ()>> = T::AssocB;`, while `X: Trait` gets checked given `A<X>` (by virtue of projection wfchecking post alias expansion[^2]), the associated type constraint `AssocA = ()` gets dropped entirely! While we could choose to warn on such cases, it would inevitably lead to a huge pile of special cases.
3. While it's common knowledge that the body / aliased type / RHS of an (eager) type alias does not get checked for well-formedness, I'm not sure if people would realize that that extends to bounds as well. Namely, `type A<T: Trait<[u8]>> = T::Proj;` compiles even if `Trait`'s generic parameter requires `Sized`. Of course, at usage sites `[u8]: Sized` would still end up getting checked[^2], so it's not a huge problem if you have full control over `A`. However, imagine that `A` was actually part of a public API and was never used inside the defining crate (not unreasonable). In such a scenario, downstream users would be presented with an impossible to use type alias! Remember, bounds may grow arbitrarily complex and nuanced in practice.
4. Even if we allowed trait bounds that "define" shorthand assoc type paths, we would still need to continue to warn in cases where the assoc ty comes from a supertrait despite the fact that the shorthand syntax can be used: `type A<T: Sub> = T::Assoc;` does compile given `trait Sub: Super {}` and `trait Super { type Assoc; }`. However, `A<X>` does not enforce `X: Sub`, only `X: Super`[^2]. All that to say, type alias bounds are simply not real and we shouldn't pretend they are!
5. Summarizing the points above, we would be legitimizing bounds that are completely broken!
2. It's infeasible to implement: Due to the lack of `TypeckResults` in `ItemCtxt` (and a way to propagate it to other parts of the compiler), the resolution of type-dependent paths in non-`Body` items (most notably type aliases) is not recoverable from the HIR alone which would be necessary because the information of whether an associated type path (projection) is a shorthand is only present pre&in-HIR and doesn't survive HIR ty lowering. Of course, I could rerun parts of HIR ty lowering inside the lint `type_alias_bounds` (namely, `probe_single_ty_param_bound_for_assoc_ty` which would need to be exposed or alternatively a stripped-down version of it). This likely has a performance impact and introduces complexity. In short, the "benefits" are not worth the costs.
---
* 3rd commit: Update a diagnostic to avoid suggesting type alias bounds
* 4th commit: Flag type alias bounds even if the RHS contains inherent associated types.
* I started to allow them at some point in the past which was not correct (see commit for details)
* 5th commit: Allow type alias bounds if the RHS contains const projections and GCEs are enabled
* (and add a `FIXME(generic_const_exprs)` to be revisited before (M)GCE's stabilization)
* As a matter of fact type alias bounds are enforced in this case because the contained AnonConsts do get checked for well-formedness and crucially they inherit the generics and predicates of their parent item (here: the type alias)
* Remaining commits: Improve the lint `type_alias_bounds` itself
---
Fixes#125789 (sugg diag fix).
Fixes#125709 (wontfix, acknowledgement, sugg diag applic fix).
Fixes#104918 (sugg diag applic fix).
Fixes#100270 (wontfix, acknowledgement, sugg diag applic fix).
Fixes#94398 (true fix).
r? `@compiler-errors` `@oli-obk`
[^1]: From the perspective of the trait solver.
[^2]: Given `type A<T: Trait> = T::Proj;`, the reason why the trait bound "`T: Trait`" gets *seemingly* enforced at usage sites of the type alias `A` is simply because `A<X>` gets expanded to "`<X as Trait>::Proj`" very early on and it's the *expansion* that gets checked for well-formedness, not the type alias reference.
Graciously handle `Drop` impls introducing more generic parameters than the ADT
Follow up to #110577Fixes#126378Fixes#126889
## Motivation
A current issue with the way we check drop impls do not specialize any of their generic parameters is that when the `Drop` impl introduces *more* generic parameters than are present on the ADT, we fail to prove any bounds involving those parameters. This can be demonstrated with the following [code on stable](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=139b65e4294634d7286a3282bc61e628) which fails due to the fact that `<T as Trait>::Assoc == U` is not present in `Foo`s `ParamEnv` even though arguably there is no reason it cannot compiler:
```rust
struct Foo<T: Trait>(T);
trait Trait {
type Assoc;
}
impl<T: Trait<Assoc = U>, U: ?Sized> Drop for Foo<T> {
//~^ ERROR: `Drop` impl requires `<T as Trait>::Assoc == U` but the struct ...
fn drop(&mut self) {}
}
fn main() {}
```
I think the motivation for supporting this code is somewhat lacking, it might be useful in practice for deeply nested associated types where you might want to be able to write:
`where T: Trait<Assoc: Other<AnotherAssoc: MoreTrait<YetAnotherAssoc: InnerTrait<Final = U>>>>`
in order to be able to just use `U` in the function body instead of writing out the whole nested associated type. Regardless I don't think there is really any reason to *not* support this code and it is relatively easy to support it.
What I find slightly more compelling is the fact that when defining a const parameter `const N: u8` we desugar that to having a where clause requiring the constant `N` is typed as `u8` (`ClauseKind::ConstArgHasType`). As we *always* desugar const parameters to have these bounds, if we attempt to prove that some const parameter `N` is of type `u8` and there is no bound on `N` in the enviroment that generally indicates usage of an incorrect `ParamEnv` (this has caught a bug already).
Given that, if we write the following code:
```rust
#![feature(associated_const_equality)]
struct Foo<T: Trait>(T);
trait Trait {
const ASSOC: usize;
}
impl<T: Trait<ASSOC = N>, const N: usize> Drop for Foo<T> {
fn drop(&mut self) {}
}
fn main() {}
```
The `Drop` impl would have this desugared where clause about `N` being of type `usize`, and if we were to try to prove that where clause in `Foo`'s `ParamEnv` we would ICE as there would not be any `ConstArgHasType` in the environment (which generally indicates improper `ParamEnv` usage. As this is otherwise well formed code (the `T: Trait<ASSOC = N>` causes `N` to be constrained) we have to handle this *somehow* and I believe the only principled way to support this is the changes I have made to `dropck.rs` that would cause these code examples to compiler (Perhaps we could just throw out all `ConstArgHasType` where clauses from the predicates we prove but that makes me nervous even if it might actually be okay).
## The changes
Currently the way `dropck.rs` works is that take the `ParamEnv` of the ADT and instantiate it with the generic arguments used on the self ty of the `impl`. We then instantiate the predicates of the drop impl with the identity params to the impl, e.g. in the original example `<T as Trait>::Assoc == U` stays as `<T as Trait>::Assoc == U`. We then attempt to prove all the where clauses in the instantiated env of the self type ADT.
This PR changes us to first instantiate the impl with infer vars, then we equate the self type (with infer vars as its generic arguments) with the self type as written by the user. This causes all generic parameters on the impl that are constrained via associated type/const equality bounds to be left as inference variables while all other parameters are still `Ty`/`Const`/`Region`
Finally when instantiating the predicates on the impl, instead of using the identity arguments, we use the list of inference variables of which some have been inferred to the impl parameters. In practice this means that we wind up proving `<T as Trait>::Assoc == ?x` which can succeed just fine. In the const generics example we would wind up trying to prove `ConstArgHasType(?x: usize)` instead of `ConstArgHasType(N: usize)` which avoids the ICE as it is expected to encounter goals of the form `?x: usize`.
At a higher level the way I justify/think about this is that as we are proving goals in the environment of the ADT (`Foo` in the above examples), we do not expect to encounter generic parameters from a different environment so we must "deal with them" somehow. In this PR we handle them by replacing them with inference variables as they should either *actually* be unconstrained (and we will error later) or they are constrained to be equal to some associated type/const.
To go along with this it would be nice if we were not instantiating the adt's env with the generic arguments to the ADT in the `Drop` impl as it would make it clearer we are proving bounds in the adt's env instead of the `Drop` impl's. Instead we would map the predicates on the drop impl to be valid in the environment of the adt. In practice this causes diagnostic regressions as all of the generic parameters in errors refer to the ones defined on the adt; attempting to map these back to the ones on the impl, while possible, is involved as writing a `TypeFolder` over `FulfillmentError` is non trivial.
## Edge cases
There are some subtle interactions here:
One is that we should not allow `<T as Trait>::Assoc == U` to be present on the `Drop` if `U` is constrained by the self type of the impl and the bound is not present in the ADT's environment. demonstrated with the [following code](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=af839e2c3e43e03a624825c58af84dff):
```rust
trait Trait {
type Assoc;
}
struct Foo<T: Trait, U: ?Sized>(T, U);
impl<T: Trait<Assoc = U>, U: ?Sized> Drop for Foo<T, U> {
//~^ ERROR: `Drop` impl requires `<T as Trait>::Assoc == U`
fn drop(&mut self) {}
}
fn main() {}
```
This is tested at `tests/ui/dropck/constrained_by_assoc_type_equality_and_self_ty.rs`.
Another weirdness is that we permit the following code to compile now:
```rust
struct Foo<T>(T);
impl<'a, T: 'a> Drop for Foo<T> {
fn drop(&mut self) {}
}
```
This is caused by the fact that we permit unconstrained lifetime parameters in trait implementations as long as they are not used in associated types (so we do not wind up erroring on this code like we perhaps ought to), combined with the fact that as we are now proving `T: '?x` instead of `T: 'a` which allows proving the bound via `'?x= 'empty` wheras previously it would have failed.
This is tested as part of `tests/ui/dropck/reject-specialized-drops-8142.rs`.
---
r? `@compiler-errors`
Previously these would be treated like integer literals and default to
`i32` if a type could not be determined. To allow for
forward-compatibility with `str` constants in the future, this PR
changes type inference to use an unbound type variable instead.
The actual type checking is deferred until after typeck where we still
ensure that the final type for the `const` operand is an integer type.
Uplift most type-system related error reporting from `rustc_infer` to `rustc_trait_selection`
Completes the major part of #127492. The only cleanup that's needed afterwards is to actually use normalization in favor of the callback where needed, and deleting `can_eq_shallow`.
r? lcnr
Sorry for the large diff! Would prefer if comments can be handled in a follow-up (unless they're absolutely dealbreakers) because it seems bitrotty to let this sit.
Just totally fully deny late-bound consts
Kinda don't care about supporting this until we have where clauses on binders. They're super busted and should be reworked in due time, and they are approximately 100% useless until then 😸Fixes#127970Fixes#127009
r? ``@BoxyUwU``
Forbid borrows and unsized types from being used as the type of a const generic under `adt_const_params`
Fixes#112219Fixes#112124Fixes#112125
### Motivation
Currently the `adt_const_params` feature allows writing `Foo<const N: [u8]>` this is entirely useless as it is not possible to write an expression which evaluates to a type that is not `Sized`. In order to actually use unsized types in const generics they are typically written as `const N: &[u8]` which *is* possible to provide a value of.
Unfortunately allowing the types of const parameters to contain references is non trivial (#120961) as it introduces a number of difficult questions about how equality of references in the type system should behave. References in the types of const generics is largely only useful for using unsized types in const generics.
This PR introduces a new feature gate `unsized_const_parameters` and moves support for `const N: [u8]` and `const N: &...` from `adt_const_params` into it. The goal here hopefully is to experiment with allowing `const N: [u8]` to work without references and then eventually completely forbid references in const generics.
Splitting this out into a new feature gate means that stabilization of `adt_const_params` does not have to resolve#120961 which is the only remaining "big" blocker for the feature. Remaining issues after this are a few ICEs and naming bikeshed for `ConstParamTy`.
### Implementation
The implementation is slightly subtle here as we would like to ensure that a stabilization of `adt_const_params` is forwards compatible with any outcome of `unsized_const_parameters`. This is inherently tricky as we do not support unstable trait implementations and we determine whether a type is valid as the type of a const parameter via a trait bound.
There are a few constraints here:
- We would like to *allow for the possibility* of adding a `Sized` supertrait to `ConstParamTy` in the event that we wind up opting to not support unsized types and instead requiring people to write the 'sized version', e.g. `const N: [u8; M]` instead of `const N: [u8]`.
- Crates should be able to enable `unsized_const_parameters` and write trait implementations of `ConstParamTy` for `!Sized` types without downstream crates that only enable `adt_const_params` being able to observe this (required for std to be able to `impl<T> ConstParamTy for [T]`
Ultimately the way this is accomplished is via having two traits (sad), `ConstParamTy` and `UnsizedConstParamTy`. Depending on whether `unsized_const_parameters` is enabled or not we change which trait is used to check whether a type is allowed to be a const parameter.
Long term (when stabilizing `UnsizedConstParamTy`) it should be possible to completely merge these traits (and derive macros), only having a single `trait ConstParamTy` and `macro ConstParamTy`.
Under `adt_const_params` it is now illegal to directly refer to `ConstParamTy` it is only used as an internal impl detail by `derive(ConstParamTy)` and checking const parameters are well formed. This is necessary in order to ensure forwards compatibility with all possible future directions for `feature(unsized_const_parameters)`.
Generally the intuition here should be that `ConstParamTy` is the stable trait that everything uses, and `UnsizedConstParamTy` is that plus unstable implementations (well, I suppose `ConstParamTy` isn't stable yet :P).
Avoid ref when using format! in compiler
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
See also https://github.com/rust-lang/rust-clippy/issues/10851
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
Lazy type aliases: Diagostics: Detect bivariant ty params that are only used recursively
Follow-up to errs's #127871. Extends the logic to cover LTAs, too, not just ADTs.
This change only takes effect with the next-gen solver enabled as cycle errors like
the one we have here are fatal in the old solver. That's my explanation anyways.
r? compiler-errors
Use structured suggestions for unconstrained generic parameters on impl blocks
I did not deduplicate with `UnusedGenericParameter`, because in contrast to type declarations, just using a generic parameter in an impl isn't enough, it must be used with the right variance and not just as part of a projection.
`C-cmse-nonsecure-call`: improved error messages
tracking issue: #81391
issue for the error messages (partially implemented by this PR): #81347
related, in that it also deals with CMSE: https://github.com/rust-lang/rust/pull/127766
When using the `C-cmse-nonsecure-call` ABI, both the arguments and return value must be passed via registers. Previously, when violating this constraint, an ugly LLVM error would be shown. Now, the rust compiler itself will print a pretty message and link to more information.
Rollup of 7 pull requests
Successful merges:
- #121533 (Handle .init_array link_section specially on wasm)
- #127825 (Migrate `macos-fat-archive`, `manual-link` and `archive-duplicate-names` `run-make` tests to rmake)
- #127891 (Tweak suggestions when using incorrect type of enum literal)
- #127902 (`collect_tokens_trailing_token` cleanups)
- #127928 (Migrate `lto-smoke-c` and `link-path-order` `run-make` tests to rmake)
- #127935 (Change `binary_asm_labels` to only fire on x86 and x86_64)
- #127953 ([compiletest] Search *.a when getting dynamic libraries on AIX)
r? `@ghost`
`@rustbot` modify labels: rollup
Represent type-level consts with new-and-improved `hir::ConstArg`
### Summary
This is a step toward `min_generic_const_exprs`. We now represent all const
generic arguments using an enum that differentiates between const *paths*
(temporarily just bare const params) and arbitrary anon consts that may perform
computations. This will enable us to cleanly implement the `min_generic_const_args`
plan of allowing the use of generics in paths used as const args, while
disallowing their use in arbitrary anon consts. Here is a summary of the salient
aspects of this change:
- Add `current_def_id_parent` to `LoweringContext`
This is needed to track anon const parents properly once we implement
`ConstArgKind::Path` (which requires moving anon const def-creation
outside of `DefCollector`).
- Create `hir::ConstArgKind` enum with `Path` and `Anon` variants. Use it in the
existing `hir::ConstArg` struct, replacing the previous `hir::AnonConst` field.
- Use `ConstArg` for all instances of const args. Specifically, use it instead
of `AnonConst` for assoc item constraints, array lengths, and const param
defaults.
- Some `ast::AnonConst`s now have their `DefId`s created in
rustc_ast_lowering rather than `DefCollector`. This is because in some
cases they will end up becoming a `ConstArgKind::Path` instead, which
has no `DefId`. We have to solve this in a hacky way where we guess
whether the `AnonConst` could end up as a path const since we can't
know for sure until after name resolution (`N` could refer to a free
const or a nullary struct). If it has no chance as being a const
param, then we create a `DefId` in `DefCollector` -- otherwise we
decide during ast_lowering. This will have to be updated once all path
consts use `ConstArgKind::Path`.
- We explicitly use `ConstArgHasType` for array lengths, rather than
implicitly relying on anon const type feeding -- this is due to the
addition of `ConstArgKind::Path`.
- Some tests have their outputs changed, but the changes are for the
most part minor (including removing duplicate or almost-duplicate
errors). One test now ICEs, but it is for an incomplete, unstable
feature and is now tracked at https://github.com/rust-lang/rust/issues/127009.
### Followup items post-merge
- Use `ConstArgKind::Path` for all const paths, not just const params.
- Fix (no github dont close this issue) #127009
- If a path in generic args doesn't resolve as a type, try to resolve as a const
instead (do this in rustc_resolve). Then remove the special-casing from
`rustc_ast_lowering`, so that all params will automatically be lowered as
`ConstArgKind::Path`.
- (?) Consider making `const_evaluatable_unchecked` a hard error, or at least
trying it in crater
r? `@BoxyUwU`
Tweak suggestions when using incorrect type of enum literal
More accurate suggestions when writing wrong style of enum variant literal:
```
error[E0533]: expected value, found struct variant `E::Empty3`
--> $DIR/empty-struct-braces-expr.rs:18:14
|
LL | let e3 = E::Empty3;
| ^^^^^^^^^ not a value
|
help: you might have meant to create a new value of the struct
|
LL | let e3 = E::Empty3 {};
| ++
```
```
error[E0533]: expected value, found struct variant `E::V`
--> $DIR/struct-literal-variant-in-if.rs:10:13
|
LL | if x == E::V { field } {}
| ^^^^ not a value
|
help: you might have meant to create a new value of the struct
|
LL | if x == (E::V { field }) {}
| + +
```
```
error[E0618]: expected function, found enum variant `Enum::Unit`
--> $DIR/suggestion-highlights.rs:15:5
|
LL | Unit,
| ---- enum variant `Enum::Unit` defined here
...
LL | Enum::Unit();
| ^^^^^^^^^^--
| |
| call expression requires function
|
help: `Enum::Unit` is a unit enum variant, and does not take parentheses to be constructed
|
LL - Enum::Unit();
LL + Enum::Unit;
|
```
```
error[E0599]: no variant or associated item named `tuple` found for enum `Enum` in the current scope
--> $DIR/suggestion-highlights.rs:36:11
|
LL | enum Enum {
| --------- variant or associated item `tuple` not found for this enum
...
LL | Enum::tuple;
| ^^^^^ variant or associated item not found in `Enum`
|
help: there is a variant with a similar name
|
LL | Enum::Tuple(/* i32 */);
| ~~~~~~~~~~~~~~~~;
|
```
Tweak "field not found" suggestion when giving struct literal for tuple struct type:
```
error[E0560]: struct `S` has no field named `x`
--> $DIR/nested-non-tuple-tuple-struct.rs:8:19
|
LL | pub struct S(f32, f32);
| - `S` defined here
...
LL | let _x = (S { x: 1.0, y: 2.0 }, S { x: 3.0, y: 4.0 });
| ^ field does not exist
|
help: `S` is a tuple struct, use the appropriate syntax
|
LL | let _x = (S(/* f32 */, /* f32 */), S { x: 3.0, y: 4.0 });
| ~~~~~~~~~~~~~~~~~~~~~~~
Handle .init_array link_section specially on wasm
Given that wasm-ld now has support for [.init_array](8f2bd8ae68/llvm/lib/MC/WasmObjectWriter.cpp (L1852)), it appears we can easily implement that section by falling through to the normal path rather than taking the typical custom_section path for wasm.
The wasm-ld appears to have a bunch of limitations. Only one static with the `link_section` in a crate or else you hit the fatal error in the link above "only one .init_array section fragment supported". They do not get merged.
You can still call multiple constructors by setting it to an array.
```
unsafe extern "C" fn ctor() {
println!("foo");
}
#[used]
#[link_section = ".init_array"]
static FOO: [unsafe extern "C" fn(); 2] = [ctor, ctor];
```
Another issue appears to be that if crate *A* depends on crate *B*, but *A* doesn't call any symbols from *B* and *B* doesn't `#[export_name = ...]` any symbols, then crate *B*'s constructor will not be called. The workaround to this is to provide an exported symbol in crate *B*.
Use more accurate span for `addr_of!` suggestion
Use a multipart suggestion instead of a single whole-span replacement:
```
error[E0796]: creating a shared reference to a mutable static
--> $DIR/reference-to-mut-static-unsafe-fn.rs:10:18
|
LL | let _y = &X;
| ^^ shared reference to mutable static
|
= note: this shared reference has lifetime `'static`, but if the static ever gets mutated, or a mutable reference is created, then any further use of this shared reference is Undefined Behavior
help: use `addr_of!` instead to create a raw pointer
|
LL | let _y = addr_of!(X);
| ~~~~~~~~~ +
```
Mention that type parameters are used recursively on bivariance error
Right now when a type parameter is used recursively, even with indirection (so it has a finite size) we say that the type parameter is unused:
```
struct B<T>(Box<B<T>>);
```
This is confusing, because the type parameter is *used*, it just doesn't have its variance constrained. This PR tweaks that message to mention that it must be used *non-recursively*.
Not sure if we should actually mention "variance" here, but also I'd somewhat prefer we don't keep the power users in the dark w.r.t the real underlying issue, which is that the variance isn't constrained. That technical detail is reserved for a note, though.
cc `@fee1-dead`
Fixes#118976Fixes#26283Fixes#53191Fixes#105740Fixes#110466
Use a multipart suggestion instead of a single whole-span replacement:
```
error[E0796]: creating a shared reference to a mutable static
--> $DIR/reference-to-mut-static-unsafe-fn.rs:10:18
|
LL | let _y = &X;
| ^^ shared reference to mutable static
|
= note: this shared reference has lifetime `'static`, but if the static ever gets mutated, or a mutable reference is created, then any further use of this shared reference is Undefined Behavior
help: use `addr_of!` instead to create a raw pointer
|
LL | let _y = addr_of!(X);
| ~~~~~~~~~ +
```
```
error[E0533]: expected value, found struct variant `E::Empty3`
--> $DIR/empty-struct-braces-expr.rs:18:14
|
LL | let e3 = E::Empty3;
| ^^^^^^^^^ not a value
|
help: you might have meant to create a new value of the struct
|
LL | let e3 = E::Empty3 {};
| ++
```
```
error[E0533]: expected value, found struct variant `E::V`
--> $DIR/struct-literal-variant-in-if.rs:10:13
|
LL | if x == E::V { field } {}
| ^^^^ not a value
|
help: you might have meant to create a new value of the struct
|
LL | if x == (E::V { field }) {}
| + +
```
```
error[E0618]: expected function, found enum variant `Enum::Unit`
--> $DIR/suggestion-highlights.rs:15:5
|
LL | Unit,
| ---- enum variant `Enum::Unit` defined here
...
LL | Enum::Unit();
| ^^^^^^^^^^--
| |
| call expression requires function
|
help: `Enum::Unit` is a unit enum variant, and does not take parentheses to be constructed
|
LL - Enum::Unit();
LL + Enum::Unit;
|
```
```
error[E0599]: no variant or associated item named `tuple` found for enum `Enum` in the current scope
--> $DIR/suggestion-highlights.rs:36:11
|
LL | enum Enum {
| --------- variant or associated item `tuple` not found for this enum
...
LL | Enum::tuple;
| ^^^^^ variant or associated item not found in `Enum`
|
help: there is a variant with a similar name
|
LL | Enum::Tuple(/* i32 */);
| ~~~~~~~~~~~~~~~~;
|
```
More accurate span for type parameter suggestion
After:
```
error[E0229]: associated item constraints are not allowed here
--> $DIR/impl-block-params-declared-in-wrong-spot-issue-113073.rs:3:10
|
LL | impl Foo<T: Default> for String {}
| ^^^^^^^^^^ associated item constraint not allowed here
|
help: declare the type parameter right after the `impl` keyword
|
LL - impl Foo<T: Default> for String {}
LL + impl<T: Default> Foo<T> for String {}
|
```
Before:
```
error[E0229]: associated item constraints are not allowed here
--> $DIR/impl-block-params-declared-in-wrong-spot-issue-113073.rs:3:10
|
LL | impl Foo<T: Default> for String {}
| ^^^^^^^^^^ associated item constraint not allowed here
|
help: declare the type parameter right after the `impl` keyword
|
LL | impl<T: Default> Foo<T> for String {}
| ++++++++++++ ~
```
Fix associated item removal suggestion
We were previously telling people to write what was already there, instead of removal (treating it as a `help`). We now properly suggest to remove the code that needs to be removed.
```
error[E0229]: associated item constraints are not allowed here
--> $DIR/E0229.rs:13:25
|
LL | fn baz<I>(x: &<I as Foo<A = Bar>>::A) {}
| ^^^^^^^ associated item constraint not allowed here
|
help: consider removing this associated item binding
|
LL - fn baz<I>(x: &<I as Foo<A = Bar>>::A) {}
LL + fn baz<I>(x: &<I as Foo>::A) {}
|
```
After:
```
error[E0229]: associated item constraints are not allowed here
--> $DIR/impl-block-params-declared-in-wrong-spot-issue-113073.rs:3:10
|
LL | impl Foo<T: Default> for String {}
| ^^^^^^^^^^ associated item constraint not allowed here
|
help: declare the type parameter right after the `impl` keyword
|
LL - impl Foo<T: Default> for String {}
LL + impl<T: Default> Foo<T> for String {}
|
```
Before:
```
error[E0229]: associated item constraints are not allowed here
--> $DIR/impl-block-params-declared-in-wrong-spot-issue-113073.rs:3:10
|
LL | impl Foo<T: Default> for String {}
| ^^^^^^^^^^ associated item constraint not allowed here
|
help: declare the type parameter right after the `impl` keyword
|
LL | impl<T: Default> Foo<T> for String {}
| ++++++++++++ ~
```
We were previously telling people to write what was already there, instead of removal.
```
error[E0229]: associated item constraints are not allowed here
--> $DIR/E0229.rs:13:25
|
LL | fn baz<I>(x: &<I as Foo<A = Bar>>::A) {}
| ^^^^^^^ associated item constraint not allowed here
|
help: consider removing this associated item binding
|
LL - fn baz<I>(x: &<I as Foo<A = Bar>>::A) {}
LL + fn baz<I>(x: &<I as Foo>::A) {}
|
```
This is a very large commit since a lot needs to be changed in order to
make the tests pass. The salient changes are:
- `ConstArgKind` gets a new `Path` variant, and all const params are now
represented using it. Non-param paths still use `ConstArgKind::Anon`
to prevent this change from getting too large, but they will soon use
the `Path` variant too.
- `ConstArg` gets a distinct `hir_id` field and its own variant in
`hir::Node`. This affected many parts of the compiler that expected
the parent of an `AnonConst` to be the containing context (e.g., an
array repeat expression). They have been changed to check the
"grandparent" where necessary.
- Some `ast::AnonConst`s now have their `DefId`s created in
rustc_ast_lowering rather than `DefCollector`. This is because in some
cases they will end up becoming a `ConstArgKind::Path` instead, which
has no `DefId`. We have to solve this in a hacky way where we guess
whether the `AnonConst` could end up as a path const since we can't
know for sure until after name resolution (`N` could refer to a free
const or a nullary struct). If it has no chance as being a const
param, then we create a `DefId` in `DefCollector` -- otherwise we
decide during ast_lowering. This will have to be updated once all path
consts use `ConstArgKind::Path`.
- We explicitly use `ConstArgHasType` for array lengths, rather than
implicitly relying on anon const type feeding -- this is due to the
addition of `ConstArgKind::Path`.
- Some tests have their outputs changed, but the changes are for the
most part minor (including removing duplicate or almost-duplicate
errors). One test now ICEs, but it is for an incomplete, unstable
feature and is now tracked at #127009.
Automatically taint when reporting errors from ItemCtxt
This isn't very robust yet, as you need to use `itemctxt.dcx()` instead of `tcx.dcx()` for it to take effect, but it's at least more convenient than sprinkling `set_tainted_by_errors` calls in individual places.
based on https://github.com/rust-lang/rust/pull/127357
r? `@fmease`
Move trait selection error reporting to its own top-level module
This effectively moves `rustc_trait_selection::traits::error_reporting` to `rustc_trait_selection::error_reporting::traits`. There are only a couple of actual changes to the code, like moving the `pretty_impl_header` fn out of the specialization module for privacy reasons.
This is quite pointless on its own, but having `error_reporting` as a top-level module in `rustc_trait_selection` is very important to make sure we have a meaningful file structure for when we move **type** error reporting (and region error reporting, with which it's incredibly entangled currently) into `rustc_trait_selection`. I've opened a tracking issue here: #127492
r? lcnr
Uplift elaboration into `rustc_type_ir`
Allows us to deduplicate and consolidate elaboration (including these stupid elaboration duplicate fns i added for pretty printing like 3 years ago) so I'm pretty hyped about this change :3
r? lcnr
Make `can_eq` process obligations (almost) everywhere
Move `can_eq` to an extension trait on `InferCtxt` in `rustc_trait_selection`, and change it so that it processes obligations. This should strengthen it to be more accurate in some cases, but is most important for the new trait solver which delays relating aliases to `AliasRelate` goals. Without this, we always basically just return true when passing aliases to `can_eq`, which can lead to weird errors, for example #127149.
I'm not actually certain if we should *have* `can_eq` be called on the good path. In cases where we need `can_eq`, we probably should just be using a regular probe.
Fixes#127149
r? lcnr