Implemented `FromStr` for `CString` and `TryFrom<CString>` for `String`
The motivation of this change is making it possible to use `CString` in generic methods with `FromStr` and `TryInto<String>` trait bounds. The same traits are already implemented for `OsString` which is an FFI type too.
remove const_cow_is_borrowed feature gate
The two functions guarded by this are still unstable, and there's no reason to require a separate feature gate for their const-ness -- we can just have `cow_is_borrowed` cover both kinds of stability.
Cc #65143
Port sort-research-rs test suite to Rust stdlib tests
This PR is a followup to https://github.com/rust-lang/rust/pull/124032. It replaces the tests that test the various sort functions in the standard library with a test-suite developed as part of https://github.com/Voultapher/sort-research-rs. The current tests suffer a couple of problems:
- They don't cover important real world patterns that the implementations take advantage of and execute special code for.
- The input lengths tested miss out on code paths. For example, important safety property tests never reach the quicksort part of the implementation.
- The miri side is often limited to `len <= 20` which means it very thoroughly tests the insertion sort, which accounts for 19 out of 1.5k LoC.
- They are split into to core and alloc, causing code duplication and uneven coverage.
- ~~The randomness is tied to a caller location, wasting the space exploration capabilities of randomized testing.~~ The randomness is not repeatable, as it relies on `std:#️⃣:RandomState::new().build_hasher()`.
Most of these issues existed before https://github.com/rust-lang/rust/pull/124032, but they are intensified by it. One thing that is new and requires additional testing, is that the new sort implementations specialize based on type properties. For example `Freeze` and non `Freeze` execute different code paths.
Effectively there are three dimensions that matter:
- Input type
- Input length
- Input pattern
The ported test-suite tests various properties along all three dimensions, greatly improving test coverage. It side-steps the miri issue by preferring sampled approaches. For example the test that checks if after a panic the set of elements is still the original one, doesn't do so for every single possible panic opportunity but rather it picks one at random, and performs this test across a range of input length, which varies the panic point across them. This allows regular execution to easily test inputs of length 10k, and miri execution up to 100 which covers significantly more code. The randomness used is tied to a fixed - but random per process execution - seed. This allows for fully repeatable tests and fuzzer like exploration across multiple runs.
Structure wise, the tests are previously found in the core integration tests for `sort_unstable` and alloc unit tests for `sort`. The new test-suite was developed to be a purely black-box approach, which makes integration testing the better place, because it can't accidentally rely on internal access. Because unwinding support is required the tests can't be in core, even if the implementation is, so they are now part of the alloc integration tests. Are there architectures that can only build and test core and not alloc? If so, do such platforms require sort testing? For what it's worth the current implementation state passes miri `--target mips64-unknown-linux-gnuabi64` which is big endian.
The test-suite also contains tests for properties that were and are given by the current and previous implementations, and likely relied upon by users but weren't tested. For example `self_cmp` tests that the two parameters `a` and `b` passed into the comparison function are never references to the same object, which if the user is sorting for example a `&mut [Mutex<i32>]` could lead to a deadlock.
Instead of using the hashed caller location as rand seed, it uses seconds since unix epoch / 10, which given timestamps in the CI should be reasonably easy to reproduce, but also allows fuzzer like space exploration.
---
Test run-time changes:
Setup:
```
Linux 6.10
rustc 1.83.0-nightly (f79a912d9 2024-09-18)
AMD Ryzen 9 5900X 12-Core Processor (Zen 3 micro-architecture)
CPU boost enabled.
```
master: e9df22f
Before core integration tests:
```
$ LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/coretests-219cbd0308a49e2f
Time (mean ± σ): 869.6 ms ± 21.1 ms [User: 1327.6 ms, System: 95.1 ms]
Range (min … max): 845.4 ms … 917.0 ms 10 runs
# MIRIFLAGS="-Zmiri-disable-isolation" to get real time
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/core
finished in 738.44s
```
After core integration tests:
```
$ LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/coretests-219cbd0308a49e2f
Time (mean ± σ): 865.1 ms ± 14.7 ms [User: 1283.5 ms, System: 88.4 ms]
Range (min … max): 836.2 ms … 885.7 ms 10 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/core
finished in 752.35s
```
Before alloc unit tests:
```
LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/alloc-19c15e6e8565aa54
Time (mean ± σ): 295.0 ms ± 9.9 ms [User: 719.6 ms, System: 35.3 ms]
Range (min … max): 284.9 ms … 319.3 ms 10 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/alloc
finished in 322.75s
```
After alloc unit tests:
```
LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/alloc-19c15e6e8565aa54
Time (mean ± σ): 97.4 ms ± 4.1 ms [User: 297.7 ms, System: 28.6 ms]
Range (min … max): 92.3 ms … 109.2 ms 27 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/alloc
finished in 309.18s
```
Before alloc integration tests:
```
$ LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/alloctests-439e7300c61a8046
Time (mean ± σ): 103.2 ms ± 1.7 ms [User: 135.7 ms, System: 39.4 ms]
Range (min … max): 99.7 ms … 107.3 ms 28 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/alloc
finished in 231.35s
```
After alloc integration tests:
```
$ LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/alloctests-439e7300c61a8046
Time (mean ± σ): 379.8 ms ± 4.7 ms [User: 4620.5 ms, System: 1157.2 ms]
Range (min … max): 373.6 ms … 386.9 ms 10 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/alloc
finished in 449.24s
```
In my opinion the results don't change iterative library development or CI execution in meaningful ways. For example currently the library doc-tests take ~66s and incremental compilation takes 10+ seconds. However I only have limited knowledge of the various local development workflows that exist, and might be missing one that is significantly impacted by this change.
The `Box<T: Default>` impl currently calls `T::default()` before allocating
the `Box`.
Most `Default` impls are trivial, which should in theory allow
LLVM to construct `T: Default` directly in the `Box` allocation when calling
`<Box<T>>::default()`.
However, the allocation may fail, which necessitates calling `T's` destructor if it has one.
If the destructor is non-trivial, then LLVM has a hard time proving that it's
sound to elide, which makes it construct `T` on the stack first, and then copy it into the allocation.
Create an uninit `Box` first, and then write `T::default` into it, so that LLVM now only needs to prove
that the `T::default` can't panic, which should be trivial for most `Default` impls.
liballoc: introduce String, Vec const-slicing
This change `const`-qualifies many methods on `Vec` and `String`, notably `as_slice`, `as_str`, `len`. These changes are made behind the unstable feature flag `const_vec_string_slice`.
## Motivation
This is to support simultaneous variance over ownership and constness. I have an enum type that may contain either `String` or `&str`, and I want to produce a `&str` from it in a possibly-`const` context.
```rust
enum StrOrString<'s> {
Str(&'s str),
String(String),
}
impl<'s> StrOrString<'s> {
const fn as_str(&self) -> &str {
match self {
// In a const-context, I really only expect to see this variant, but I can't switch the implementation
// in some mode like #[cfg(const)] -- there has to be a single body
Self::Str(s) => s,
// so this is a problem, since it's not `const`
Self::String(s) => s.as_str(),
}
}
}
```
Currently `String` and `Vec` don't support this, but can without functional changes. Similar logic applies for `len`, `capacity`, `is_empty`.
## Changes
The essential thing enabling this change is that `Unique::as_ptr` is `const`. This lets us convert `RawVec::ptr` -> `Vec::as_ptr` -> `Vec::as_slice` -> `String::as_str`.
I had to move the `Deref` implementations into `as_{str,slice}` because `Deref` isn't `#[const_trait]`, but I would expect this change to be invisible up to inlining. I moved the `DerefMut` implementations as well for uniformity.
This change `const`-qualifies many methods on Vec and String, notably
`as_slice`, `as_str`, `len`. These changes are made behind the unstable
feature flag `const_vec_string_slice` with the following tracking issue:
https://github.com/rust-lang/rust/issues/129041
Mark some more types as having insignificant dtor
These were caught by https://github.com/rust-lang/rust/pull/129864#issuecomment-2376658407, which is implementing a lint for some changes in drop order for temporaries in tail expressions.
Specifically, the destructors of `CString` and the bitpacked repr for `std::io::Error` are insignificant insofar as they don't have side-effects on things like locking or synchronization; they just free memory.
See some discussion on #89144 for what makes a drop impl "significant"
This commit is a followup to https://github.com/rust-lang/rust/pull/124032. It
replaces the tests that test the various sort functions in the standard library
with a test-suite developed as part of
https://github.com/Voultapher/sort-research-rs. The current tests suffer a
couple of problems:
- They don't cover important real world patterns that the implementations take
advantage of and execute special code for.
- The input lengths tested miss out on code paths. For example, important safety
property tests never reach the quicksort part of the implementation.
- The miri side is often limited to `len <= 20` which means it very thoroughly
tests the insertion sort, which accounts for 19 out of 1.5k LoC.
- They are split into to core and alloc, causing code duplication and uneven
coverage.
- The randomness is not repeatable, as it
relies on `std:#️⃣:RandomState::new().build_hasher()`.
Most of these issues existed before
https://github.com/rust-lang/rust/pull/124032, but they are intensified by it.
One thing that is new and requires additional testing, is that the new sort
implementations specialize based on type properties. For example `Freeze` and
non `Freeze` execute different code paths.
Effectively there are three dimensions that matter:
- Input type
- Input length
- Input pattern
The ported test-suite tests various properties along all three dimensions,
greatly improving test coverage. It side-steps the miri issue by preferring
sampled approaches. For example the test that checks if after a panic the set of
elements is still the original one, doesn't do so for every single possible
panic opportunity but rather it picks one at random, and performs this test
across a range of input length, which varies the panic point across them. This
allows regular execution to easily test inputs of length 10k, and miri execution
up to 100 which covers significantly more code. The randomness used is tied to a
fixed - but random per process execution - seed. This allows for fully
repeatable tests and fuzzer like exploration across multiple runs.
Structure wise, the tests are previously found in the core integration tests for
`sort_unstable` and alloc unit tests for `sort`. The new test-suite was
developed to be a purely black-box approach, which makes integration testing the
better place, because it can't accidentally rely on internal access. Because
unwinding support is required the tests can't be in core, even if the
implementation is, so they are now part of the alloc integration tests. Are
there architectures that can only build and test core and not alloc? If so, do
such platforms require sort testing? For what it's worth the current
implementation state passes miri `--target mips64-unknown-linux-gnuabi64` which
is big endian.
The test-suite also contains tests for properties that were and are given by the
current and previous implementations, and likely relied upon by users but
weren't tested. For example `self_cmp` tests that the two parameters `a` and `b`
passed into the comparison function are never references to the same object,
which if the user is sorting for example a `&mut [Mutex<i32>]` could lead to a
deadlock.
Instead of using the hashed caller location as rand seed, it uses seconds since
unix epoch / 10, which given timestamps in the CI should be reasonably easy to
reproduce, but also allows fuzzer like space exploration.
Improve autovectorization of to_lowercase / to_uppercase functions
Refactor the code in the `convert_while_ascii` helper function to make it more suitable for auto-vectorization and also process the full ascii prefix of the string. The generic case conversion logic will only be invoked starting from the first non-ascii character.
The runtime on a microbenchmark with a small ascii-only input decreases from ~55ns to ~18ns per iteration. The new implementation also reduces the amount of unsafe code and encapsulates all unsafe inside the helper function.
Fixes#123712
update `compiler-builtins` to 0.1.126
this requires the addition of a bootstrap variant of the new `naked_asm!` macro
r? `@tgross35`
extracted from https://github.com/rust-lang/rust/pull/128651
Since the stabilization in #127679 has reached stage0, 1.82-beta, we can
start using `&raw` freely, and even the soft-deprecated `ptr::addr_of!`
and `ptr::addr_of_mut!` can stop allowing the unstable feature.
I intentionally did not change any documentation or tests, but the rest
of those macro uses are all now using `&raw const` or `&raw mut` in the
standard library.
Refactor the code in the `convert_while_ascii` helper function to make
it more suitable for auto-vectorization and also process the full ascii
prefix of the string. The generic case conversion logic will only be
invoked starting from the first non-ascii character.
The runtime on microbenchmarks with ascii-only inputs improves between
1.5x for short and 4x for long inputs on x86_64 and aarch64.
The new implementation also encapsulates all unsafe inside the
`convert_while_ascii` function.
Fixes#123712
Add str.as_str() for easy Deref to string slices
Working with `Box<str>` is cumbersome, because in places like `iter.filter()` it can end up being `&Box<str>` or even `&&Box<str>`, and such type doesn't always get auto-dereferenced as expected.
Dereferencing such box to `&str` requires ugly syntax like `&**boxed_str` or `&***boxed_str`, with the exact amount of `*`s.
`Box<str>` is [not easily comparable with other string types](https://github.com/rust-lang/rust/pull/129852) via `PartialEq`. `Box<str>` won't work for lookups in types like `HashSet<String>`, because `Borrow<String>` won't take types like `&Box<str>`. OTOH `set.contains(s.as_str())` works nicely regardless of levels of indirection.
`String` has a simple solution for this: the `as_str()` method, and `Box<str>` should too.
Avoid re-validating UTF-8 in `FromUtf8Error::into_utf8_lossy`
Part of the unstable feature `string_from_utf8_lossy_owned` - #129436
Refactor `FromUtf8Error::into_utf8_lossy` to copy valid UTF-8 bytes into the buffer, avoiding double validation of bytes.
Add tests that mirror the `String::from_utf8_lossy` tests.
Refactor `into_utf8_lossy` to copy valid UTF-8 bytes into the buffer,
avoiding double validation of bytes.
Add tests that mirror the `String::from_utf8_lossy` tests
[Clippy] Get rid of most `std` `match_def_path` usage, swap to diagnostic items.
Part of https://github.com/rust-lang/rust-clippy/issues/5393.
This was going to remove all `std` paths, but `SeekFrom` has issues being cleanly replaced with a diagnostic item as the paths are for variants, which currently cannot be diagnostic items.
This also, as a last step, categories the paths to help with future path removals.