errors: only eagerly translate subdiagnostics
Subdiagnostics don't need to be lazily translated, they can always be eagerly translated. Eager translation is slightly more complex as we need to have a `DiagCtxt` available to perform the translation, which involves slightly more threading of that context.
This slight increase in complexity should enable later simplifications - like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages into the diagnostic structs rather than having them in separate files (working on that was what led to this change).
r? ```@nnethercote```
Fix msg for verbose suggestions with confusable capitalization
When encountering a verbose/multipart suggestion that has changes that are only caused by different capitalization of ASCII letters that have little differenciation, expand the message to highlight that fact (like we already do for inline suggestions).
The logic to do this was already present, but implemented incorrectly.
Subdiagnostics don't need to be lazily translated, they can always be
eagerly translated. Eager translation is slightly more complex as we need
to have a `DiagCtxt` available to perform the translation, which involves
slightly more threading of that context.
This slight increase in complexity should enable later simplifications -
like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages
into the diagnostic structs rather than having them in separate files
(working on that was what led to this change).
Signed-off-by: David Wood <david@davidtw.co>
When encountering a verbose/multipart suggestion that has changes
that are only caused by different capitalization of ASCII letters that have
little differenciation, expand the message to highlight that fact (like we
already do for inline suggestions).
The logic to do this was already present, but implemented incorrectly.
All the other `emit`/`emit_diagnostic` methods were recently made
consuming (e.g. #119606), but this one wasn't. But it makes sense to.
Much of this is straightforward, and lots of `clone` calls are avoided.
There are a couple of tricky bits.
- `Emitter::primary_span_formatted` no longer takes a `Diagnostic` and
returns a pair. Instead it takes the two fields from `Diagnostic` that
it used (`span` and `suggestions`) as `&mut`, and modifies them. This
is necessary to avoid the cloning of `diag.children` in two emitters.
- `from_errors_diagnostic` is rearranged so various uses of `diag` occur
before the consuming `emit_diagnostic` call.
The two kinds of delayed bug have quite different semantics so a
stronger conceptual separation is nice. (`is_error` is a good example,
because the two kinds have different behaviour.)
The commit also moves the `DelayedBug` variant after `Error` in `Level`,
to reflect the fact that it's weaker than `Error` -- it might trigger an
error but also might not. (The pre-existing `downgrade_to_delayed_bug`
function also reflects the notion that delayed bugs are lower/after
normal errors.)
Plus it condenses some of the comments on `Level` into a table, for
easier reading, and introduces `can_be_top_or_sub` to indicate which
levels can be used in top-level diagnostics vs. subdiagnostics.
Finally, it renames `DiagCtxtInner::span_delayed_bugs` as
`DiagCtxtInner::delayed_bugs`. The `span_` prefix is unnecessary because
some delayed bugs don't have a span.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
Lots of vectors of messages called `message` or `msg`. This commit
pluralizes them.
Note that `emit_message_default` and `emit_messages_default` both
already existed, and both process a vector, so I renamed the former
`emit_messages_default_inner` because it's called by the latter.
Currently, `emit_diagnostic` takes `&mut self`.
This commit changes it so `emit_diagnostic` takes `self` and the new
`emit_diagnostic_without_consuming` function takes `&mut self`.
I find the distinction useful. The former case is much more common, and
avoids a bunch of `mut` and `&mut` occurrences. We can also restrict the
latter with `pub(crate)` which is nice.
according to a poll of gay people in my phone, purple is the most popular color to use for highlighting
| color | percentage |
| ---------- | ---------- |
| bold white | 6% |
| blue | 14% |
| cyan | 26% |
| purple | 37% |
| magenta | 17% |
unfortunately, purple is not supported by 16-color terminals, which rustc apparently wants to support for some reason.
until we require support for full 256-color terms (e.g. by doing the same feature detection as we currently do for urls), we can't use it.
instead, i have collapsed the purple votes into magenta on the theory that they're close, and also because magenta is pretty.
Per #112156, using `&` in `format!` may cause a small perf delay, so I tried to clean up one module at a time format usage. This PR includes a few removals of the ref in format (they do compile locally without the ref), as well as a few format inlining for consistency.
Currently, the output of `rustc --explain foo` displays the raw markdown in a
pager. This is acceptable, but using actual formatting makes it easier to
understand.
This patch consists of three major components:
1. A markdown parser. This is an extremely simple non-backtracking recursive
implementation that requires normalization of the final token stream
2. A utility to write the token stream to an output buffer
3. Configuration within rustc_driver_impl to invoke this combination for
`--explain`. Like the current implementation, it first attempts to print to
a pager with a fallback colorized terminal, and standard print as a last
resort.
If color is disabled, or if the output does not support it, or if printing
with color fails, it will write the raw markdown (which matches current
behavior).
Pagers known to support color are: `less` (with `-r`), `bat` (aka `catbat`),
and `delta`.
The markdown parser does not support the entire markdown specification, but
should support the following with reasonable accuracy:
- Headings, including formatting
- Comments
- Code, inline and fenced block (no indented block)
- Strong, emphasis, and strikethrough formatted text
- Links, anchor, inline, and reference-style
- Horizontal rules
- Unordered and ordered list items, including formatting
This parser and writer should be reusable by other systems if ever needed.
Each of `{D,Subd}iagnosticMessage::{Str,Eager}` has a comment:
```
// FIXME(davidtwco): can a `Cow<'static, str>` be used here?
```
This commit answers that question in the affirmative. It's not the most
compelling change ever, but it might be worth merging.
This requires changing the `impl<'a> From<&'a str>` impls to `impl
From<&'static str>`, which involves a bunch of knock-on changes that
require/result in call sites being a little more precise about exactly
what kind of string they use to create errors, and not just `&str`. This
will result in fewer unnecessary allocations, though this will not have
any notable perf effects given that these are error paths.
Note that I was lazy within Clippy, using `to_string` in a few places to
preserve the existing string imprecision. I could have used `impl
Into<{D,Subd}iagnosticMessage>` in various places as is done in the
compiler, but that would have required changes to *many* call sites
(mostly changing `&format("...")` to `format!("...")`) which didn't seem
worthwhile.