CTFE: support assert_zero_valid and assert_uninit_valid
This ensures the implementation of all three type-based assert_ intrinsics remains consistent in Miri.
`assert_inhabited` recently got stabilized in https://github.com/rust-lang/rust/pull/90896 (meaning stable `const fn` can call it), so do the same with these other intrinsics.
Cc ```@rust-lang/wg-const-eval```
Eliminate bunch of copies of error codepath from Utf8LossyChunksIter
Using a macro to stamp out 7 identical copies of the nontrivial slicing logic to exit this loop didn't seem like a necessary use of a macro. The early return case can be handled by `break` without practically any changes to the logic inside the loop.
All this code is from early 2014 (#12062—nearly 8 years ago; pre-1.0) so it's possible there were compiler limitations that forced the macro way at the time.
Confirmed that `x.py bench library/alloc --stage 0 --test-args from_utf8_lossy` is unaffected on my machine.
Stabilize some `MaybeUninit` behavior as const
This stabilizes the `MaybeUninit::as_ptr`, `MaybeUninit::assume_init`, and `MaybeUninit::assume_init_ref` as `const fn`. `MaybeUninit::as_mut_ptr` has been moved to a new flag: `const_maybe_uninit_as_mut_ptr`, which is blocked on #57349. `MaybeUninit::slice_assume_init_ref` can be `const fn` when the method is stabilized in general.
The relevant intrinsic has been stabilized as `const` as well, though this isn't user-visible. Due to the seemingly unrelated feature name I performed `rg const_assert_type` and found no other instances of it being used.
r? `@oli-obk`
`@rustbot` label: +A-const-fn +S-waiting-on-review +T-libs-api
Fix Iterator::advance_by contract inconsistency
The `advance_by(n)` docs state that in the error case `Err(k)` that k is always less than n.
It also states that `advance_by(0)` may return `Err(0)` to indicate an exhausted iterator.
These statements are inconsistent.
Since only one implementation (Skip) actually made use of that I changed it to return Ok(()) in that case too.
While adding some tests I also found a bug in `Take::advance_back_by`.
Document non-guarantees for Hash
Dependence on endianness and type sizes was reported for enum discriminants in #74215 but it is a more general
issue since for example the default implementation of `Hasher::write_usize` uses native endianness.
Additionally the implementations of library types are occasionally changed as their internal fields
change or hashing gets optimized.
## Question
Should this go on the module level documentation instead since it also concerns `Hasher` to some extent and not just `Hash`?
resolves#74215
Weaken guarantee around advancing underlying iterators in zip
The current guarantee (introduced in #52279) is too strong as it prevents adapters from exploiting knowledge about the iterator length and using counted loops for example because they would stop calling `next()` before it ever returned `None`. Additionally several nested zip iterators already fail to uphold this.
This does not yet remove any of the specialization code that tries (and sometimes fails) to uphold the guarantee for `next()`
because removing it would also affect `next_back()` in more surprising ways.
The intent is to be able to remove for example this branch
36bcf40697/library/core/src/iter/adapters/zip.rs (L234-L243)
or this test
36bcf40697/library/core/tests/iter/adapters/zip.rs (L177-L188)
Solves #82303 by declaring it a non-issue.
Faster `Layout::array`
`Layout::array` is called (indirectly) by `Vec::push()`, which is typically instantiated many times, and so making it smaller can help with compile times because less LLVM IR is generated.
r? `@ghost`
The current implementation is much more conservative than it needs to
be, because it's dealing with the size and alignment of a given `T`,
which are more restricted than an arbitrary `Layout`.
For example, imagine a struct with a `u32` and a `u4`. You can safely
create a `Layout { size_: 5, align_: 4 }` by hand, but
`Layout:🆕:<T>` will give `Layout { size_: 8, align_: 4}`, where the
size already has padding that accounts for the alignment. (And the
existing `debug_assert_eq!` in `Layout::array` already demonstrates that
no additional padding is required.)
Using a macro to stamp out 7 identical copies of the nontrivial slicing
logic to exit this loop didn't seem like a necessary use of a macro. The
early return case can be handled by `break` without practically any
changes to the logic inside the loop.
All this code is from early 2014 (7.5 years old, pre-1.0) so it's
possible there were compiler limitations that forced the macro way at
the time.
Confirmed that `x.py bench library/alloc --stage 0 --test-args from_utf8_lossy`
is unaffected on my machine.
Print associated types on opaque `impl Trait` types
This PR generalizes #91021, printing associated types for all opaque `impl Trait` types instead of just special-casing for future.
before:
```
error[E0271]: type mismatch resolving `<impl Iterator as Iterator>::Item == u32`
```
after:
```
error[E0271]: type mismatch resolving `<impl Iterator<Item = usize> as Iterator>::Item == u32`
```
---
Questions:
1. I'm kinda lost in binders hell with this one. Is all of the `rebind`ing necessary?
2. Is there a map collection type that will give me a stable iteration order? Doesn't seem like TraitRef is Ord, so I can't just sort later..
3. I removed the logic that suppresses printing generator projection types. It creates outputs like this [gist](https://gist.github.com/compiler-errors/d6f12fb30079feb1ad1d5f1ab39a3a8d). Should I put that back?
4. I also added spaces between traits, `impl A+B` -> `impl A + B`. I quite like this change, but is there a good reason to keep it like that?
r? ````@estebank````
Partially stabilize `duration_consts_2`
Methods that were only blocked on `const_panic` have been stabilized.
The remaining methods of `duration_consts_2` are all related to floats,
and as such have been placed behind the `duration_consts_float` feature
gate.
Methods that were only blocked on `const_panic` have been stabilized.
The remaining methods of `duration_consts_2` are all related to floats,
and as such have been placed behind the `duration_consts_float` feature
gate.
The functions are now `unsafe` and they use `Option::unwrap_unchecked` instead of `unwrap_or_0`
`unwrap_or_0` was added in 42357d772b. I guess `unwrap_unchecked` was not available back then.
Given this example:
```rust
pub fn first_char(s: &str) -> Option<char> {
s.chars().next()
}
```
Previously, the following assembly was produced:
```asm
_ZN7example10first_char17ha056ddea6bafad1cE:
.cfi_startproc
test rsi, rsi
je .LBB0_1
movzx edx, byte ptr [rdi]
test dl, dl
js .LBB0_3
mov eax, edx
ret
.LBB0_1:
mov eax, 1114112
ret
.LBB0_3:
lea r8, [rdi + rsi]
xor eax, eax
mov r9, r8
cmp rsi, 1
je .LBB0_5
movzx eax, byte ptr [rdi + 1]
add rdi, 2
and eax, 63
mov r9, rdi
.LBB0_5:
mov ecx, edx
and ecx, 31
cmp dl, -33
jbe .LBB0_6
cmp r9, r8
je .LBB0_9
movzx esi, byte ptr [r9]
add r9, 1
and esi, 63
shl eax, 6
or eax, esi
cmp dl, -16
jb .LBB0_12
.LBB0_13:
cmp r9, r8
je .LBB0_14
movzx edx, byte ptr [r9]
and edx, 63
jmp .LBB0_16
.LBB0_6:
shl ecx, 6
or eax, ecx
ret
.LBB0_9:
xor esi, esi
mov r9, r8
shl eax, 6
or eax, esi
cmp dl, -16
jae .LBB0_13
.LBB0_12:
shl ecx, 12
or eax, ecx
ret
.LBB0_14:
xor edx, edx
.LBB0_16:
and ecx, 7
shl ecx, 18
shl eax, 6
or eax, ecx
or eax, edx
ret
```
After this change, the assembly is reduced to:
```asm
_ZN7example10first_char17h4318683472f884ccE:
.cfi_startproc
test rsi, rsi
je .LBB0_1
movzx ecx, byte ptr [rdi]
test cl, cl
js .LBB0_3
mov eax, ecx
ret
.LBB0_1:
mov eax, 1114112
ret
.LBB0_3:
mov eax, ecx
and eax, 31
movzx esi, byte ptr [rdi + 1]
and esi, 63
cmp cl, -33
jbe .LBB0_4
movzx edx, byte ptr [rdi + 2]
shl esi, 6
and edx, 63
or edx, esi
cmp cl, -16
jb .LBB0_7
movzx ecx, byte ptr [rdi + 3]
and eax, 7
shl eax, 18
shl edx, 6
and ecx, 63
or ecx, edx
or eax, ecx
ret
.LBB0_4:
shl eax, 6
or eax, esi
ret
.LBB0_7:
shl eax, 12
or eax, edx
ret
```
Adds IEEE 754-2019 minimun and maximum functions for f32/f64
IEEE 754-2019 removed the `minNum` (`min` in Rust) and `maxNum` (`max` in Rust) operations in favor of the newly created `minimum` and `maximum` operations due to their [non-associativity](https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/minNum_maxNum_Removal_Demotion_v3.pdf) that cannot be fix in a backwards compatible manner. This PR adds `fN::{minimun,maximum}` functions following the new rules.
### IEEE 754-2019 Rules
> **minimum(x, y)** is x if x < y, y if y < x, and a quiet NaN if either operand is a NaN, according to 6.2.
For this operation, −0 compares less than +0. Otherwise (i.e., when x = y and signs are the same)
it is either x or y.
> **maximum(x, y)** is x if x > y, y if y > x, and a quiet NaN if either operand is a NaN, according to 6.2.
For this operation, +0 compares greater than −0. Otherwise (i.e., when x = y and signs are the
same) it is either x or y.
"IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019 (Revision of IEEE 754-2008) , vol., no., pp.1-84, 22 July 2019, doi: 10.1109/IEEESTD.2019.8766229.
### Implementation
This implementation is inspired by the one in [`glibc` ](90f0ac10a7/math/s_fminimum_template.c) (it self derived from the C2X draft) expect that:
- it doesn't use `copysign` because it's not available in `core` and also because `copysign` is unnecessary (we only want to check the sign, no need to create a new float)
- it also prefer `other > self` instead of `self < other` like IEEE 754-2019 does
I originally tried to implement them [using intrinsics](1d8aa13bc3) but LLVM [error out](https://godbolt.org/z/7sMrxW49a) when trying to lower them to machine intructions, GCC doesn't yet have built-ins for them, only cranelift support them nativelly (as it doesn't support the nativelly the old sementics).
Helps with https://github.com/rust-lang/rust/issues/83984
Makes docs for references a little less confusing
- Make clear that the `Pointer` trait is related to formatting
- Make clear that the `Pointer` trait is implemented for references (previously it was confusing to first see that it's implemented and then see it in "expect")
- Make clear that `&T` (shared reference) implements `Send` (if `T: Send + Sync`)
The `advance_by(n)` docs state that in the error case `Err(k)` that k is always less than n.
It also states that `advance_by(0)` may return `Err(0)` to indicate an exhausted iterator.
These statements are inconsistent.
Since only one implementation (Skip) actually made use of that I changed it to return Ok(()) in that case too.
While adding some tests I also found a bug in `Take::advance_back_by`.
Make char conversion functions unstably const
The char conversion functions like `char::from_u32` do trivial computations and can easily be converted into const fns. Only smaller tricks are needed to avoid non-const standard library functions like `Result::ok` or `bool::then_some`.
Tracking issue: https://github.com/rust-lang/rust/issues/89259
Rollup of 8 pull requests
Successful merges:
- #90386 (Add `-Zassert-incr-state` to assert state of incremental cache)
- #90438 (Clean up mess for --show-coverage documentation)
- #90480 (Mention `Vec::remove` in `Vec::swap_remove`'s docs)
- #90607 (Make slice->str conversion and related functions `const`)
- #90750 (rustdoc: Replace where-bounded Clean impl with simple function)
- #90895 (require full validity when determining the discriminant of a value)
- #90989 (Avoid suggesting literal formatting that turns into member access)
- #91002 (rustc: Remove `#[rustc_synthetic]`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
std: Get the standard library compiling for wasm64
This commit goes through and updates various `#[cfg]` as appropriate to
get the wasm64-unknown-unknown target behaving similarly to the
wasm32-unknown-unknown target. Most of this is just updating various
conditions for `target_arch = "wasm32"` to also account for `target_arch
= "wasm64"` where appropriate. This commit also lists `wasm64` as an
allow-listed architecture to not have the `restricted_std` feature
enabled, enabling experimentation with `-Z build-std` externally.
The main goal of this commit is to enable playing around with
`wasm64-unknown-unknown` externally via `-Z build-std` in a way that's
similar to the `wasm32-unknown-unknown` target. These targets are
effectively the same and only differ in their pointer size, but wasm64
is much newer and has much less ecosystem/library support so it'll still
take time to get wasm64 fully-fledged.
Dependence on endianness and type sizes was reported for enum discriminants in #74215 but it is a more general
issue since for example the default implementation of `Hasher::write_usize` uses native endianness.
Additionally the implementations of library types are occasionally changed as their internal fields
change or hashing gets optimized.