Lower them into a single item with multiple resolutions instead.
This also allows to remove additional `NodId`s and `DefId`s related to those additional items.
Previously, async constructs would be lowered to "normal" generators,
with an additional `from_generator` / `GenFuture` shim in between to
convert from `Generator` to `Future`.
The compiler will now special-case these generators internally so that
async constructs will *directly* implement `Future` without the need
to go through the `from_generator` / `GenFuture` shim.
The primary motivation for this change was hiding this implementation
detail in stack traces and debuginfo, but it can in theory also help
the optimizer as there is less abstractions to see through.
Clippy has an internal lint that checks for the usage of hardcoded def
paths and suggests to replace them with a lang or diagnostic item, if
possible. This was implemented with a hack, by getting all the variants
of the `LangItem` enum and then index into it with the position of the
`LangItem` in the `items` list. This is no longer possible, because the
`items` list can't be accessed anymore.
Track where diagnostics were created.
This implements the `-Ztrack-diagnostics` flag, which uses `#[track_caller]` to track where diagnostics are created. It is meant as a debugging tool much like `-Ztreat-err-as-bug`.
For example, the following code...
```rust
struct A;
struct B;
fn main(){
let _: A = B;
}
```
...now emits the following error message:
```
error[E0308]: mismatched types
--> src\main.rs:5:16
|
5 | let _: A = B;
| - ^ expected struct `A`, found struct `B`
| |
| expected due to this
-Ztrack-diagnostics: created at compiler\rustc_infer\src\infer\error_reporting\mod.rs:2275:31
```
Uplift `clippy::for_loops_over_fallibles` lint into rustc
This PR, as the title suggests, uplifts [`clippy::for_loops_over_fallibles`] lint into rustc. This lint warns for code like this:
```rust
for _ in Some(1) {}
for _ in Ok::<_, ()>(1) {}
```
i.e. directly iterating over `Option` and `Result` using `for` loop.
There are a number of suggestions that this PR adds (on top of what clippy suggested):
1. If the argument (? is there a better name for that expression) of a `for` loop is a `.next()` call, then we can suggest removing it (or rather replacing with `.by_ref()` to allow iterator being used later)
```rust
for _ in iter.next() {}
// turns into
for _ in iter.by_ref() {}
```
2. (otherwise) We can suggest using `while let`, this is useful for non-iterator, iterator-like things like [async] channels
```rust
for _ in rx.recv() {}
// turns into
while let Some(_) = rx.recv() {}
```
3. If the argument type is `Result<impl IntoIterator, _>` and the body has a `Result<_, _>` type, we can suggest using `?`
```rust
for _ in f() {}
// turns into
for _ in f()? {}
```
4. To preserve the original behavior and clear intent, we can suggest using `if let`
```rust
for _ in f() {}
// turns into
if let Some(_) = f() {}
```
(P.S. `Some` and `Ok` are interchangeable depending on the type)
I still feel that the lint wording/look is somewhat off, so I'll be happy to hear suggestions (on how to improve suggestions :D)!
Resolves#99272
[`clippy::for_loops_over_fallibles`]: https://rust-lang.github.io/rust-clippy/master/index.html#for_loops_over_fallibles
Stabilize const `BTree{Map,Set}::new`
The FCP was completed in #71835.
Since `len` and `is_empty` are not const stable yet, this also creates a new feature for them since they previously used the same `const_btree_new` feature.
Since `len` and `is_empty` are not const stable yet, this also
creates a new feature for them since they previously used the same
`const_btree_new` feature.
`BindingAnnotation` refactor
* `ast::BindingMode` is deleted and replaced with `hir::BindingAnnotation` (which is moved to `ast`)
* `BindingAnnotation` is changed from an enum to a tuple struct e.g. `BindingAnnotation(ByRef::No, Mutability::Mut)`
* Associated constants added for convenience `BindingAnnotation::{NONE, REF, MUT, REF_MUT}`
One goal is to make it more clear that `BindingAnnotation` merely represents syntax `ref mut` and not the actual binding mode. This was especially confusing since we had `ast::BindingMode`->`hir::BindingAnnotation`->`thir::BindingMode`.
I wish there were more symmetry between `ByRef` and `Mutability` (variant) naming (maybe `Mutable::Yes`?), and I also don't love how long the name `BindingAnnotation` is, but this seems like the best compromise. Ideas welcome.
Strengthen invalid_value lint to forbid uninit primitives, adjust docs to say that's UB
For context: https://github.com/rust-lang/rust/issues/66151#issuecomment-1174477404=
This does not make it a FCW, but it does explicitly state in the docs that uninit integers are UB.
This also doesn't affect any runtime behavior, uninit u32's will still successfully be created through mem::uninitialized.
Add test for and fix rust-lang/rust-clippy#9131
This lint seems to have been broken by #98446 -- but of course, there was no clippy test for this case at the time.
`expr.span.ctxt().outer_expn_data()` now has `MacroKind::Derive` instead of `MacroKind::Attr` for something like:
```
#[derive(Clone, Debug)]
pub struct UnderscoreInStruct {
_foo: u32,
}
```
---
changelog: none
closes: https://github.com/rust-lang/rust-clippy/issues/9131