Commit Graph

8340 Commits

Author SHA1 Message Date
bors
b054da8155 Auto merge of #122150 - ShoyuVanilla:replace-typewalker, r=lcnr
Replace `TypeWalker` usage with `TypeVisitor` in `wf.rs`

Resolves #121693
2024-03-09 12:02:25 +00:00
bors
1b427b3bf7 Auto merge of #118879 - Nadrieril:lint-range-gap, r=estebank
Lint singleton gaps after exclusive ranges

In the discussion to stabilize exclusive range patterns (https://github.com/rust-lang/rust/issues/37854), it has often come up that they're likely to cause off-by-one mistakes. We already have the `overlapping_range_endpoints` lint, so I [proposed](https://github.com/rust-lang/rust/issues/37854#issuecomment-1845580712) a lint to catch the complementary mistake.

This PR adds a new `non_contiguous_range_endpoints` lint that catches likely off-by-one errors with exclusive range patterns. Here's the idea (see the test file for more examples):
```rust
match x {
    0..10 => ..., // WARN: this range doesn't match `10_u8` because `..` is an exclusive range
    11..20 => ..., // this could appear to continue range `0_u8..10_u8`, but `10_u8` isn't matched by either of them
    _ => ...,
}
// help: use an inclusive range instead: `0_u8..=10_u8`
```

More precisely: for any exclusive range `lo..hi`, if `hi+1` is matched by another range but `hi` isn't, we suggest writing an inclusive range `lo..=hi` instead. We also catch `lo..T::MAX`.
2024-03-09 03:49:01 +00:00
Nadrieril
8ac9a04257 Lint small gaps between ranges 2024-03-09 01:14:22 +01:00
Nadrieril
f783043ebf Allow lint where we don't care 2024-03-09 01:13:42 +01:00
Matthias Krüger
02b89d1676
Rollup merge of #122172 - compiler-errors:rpitit-collect-ice, r=fmease
Don't ICE if we collect no RPITITs unless there are no unification errors

Move an assertion in `collect_return_position_impl_trait_in_trait_tys` to after the `ObligationCtxt::eq` calls, so that we only assert and ICE if we have unification errors.

Fixes #121468
2024-03-08 21:02:03 +01:00
Matthias Krüger
9829ff67ba
Rollup merge of #122171 - compiler-errors:next-solver-tests, r=lcnr
Add some new solver tests

Fixes #119607
Fixes #119608

r? lcnr
2024-03-08 21:02:02 +01:00
Matthias Krüger
e76bd6214f
Rollup merge of #122100 - compiler-errors:better-capture, r=oli-obk
Better comment for implicit captures in RPITIT

Improve the error message for implicit captures. Also always set E0657.

r? oli-obk
2024-03-08 21:02:00 +01:00
Michael Goulet
ffd30e0a69 Improve error message for opaque captures 2024-03-08 19:08:13 +00:00
bors
a655e648a9 Auto merge of #122190 - matthiaskrgr:rollup-9ol4y30, r=matthiaskrgr
Rollup of 8 pull requests

Successful merges:

 - #121025 (add known-bug tests for derive failure to detect packed repr)
 - #121194 (Refactor pre-getopts command line argument handling)
 - #121563 (Use `ControlFlow` in visitors.)
 - #122173 (Don't ICE in CTFE if raw/fn-ptr types differ)
 - #122175 (Bless tidy issues order)
 - #122179 (rustc: Fix typo)
 - #122181 (Fix crash in internal late lint checking)
 - #122183 (interpret: update comment about read_discriminant on uninhabited variants)

Failed merges:

 - #122076 (Tweak the way we protect in-place function arguments in interpreters)
 - #122132 (Diagnostic renaming 3)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-03-08 17:31:00 +00:00
Michael Goulet
8dd4e2b5ca Add some new solver tests 2024-03-08 15:54:04 +00:00
Michael Goulet
07bd05e036 Don't ICE if we collect no RPITITs unless there are no unification errors 2024-03-08 15:52:29 +00:00
bors
74acabe9b0 Auto merge of #121500 - oli-obk:track_errors12, r=petrochenkov
Merge `collect_mod_item_types` query into `check_well_formed`

follow-up to https://github.com/rust-lang/rust/pull/121154

this removes more potential parallel-compiler bottlenecks and moves diagnostics for the same items next to each other, instead of grouping diagnostics by analysis kind
2024-03-08 15:06:36 +00:00
Matthias Krüger
a08a5d4292
Rollup merge of #122181 - chenyukang:yukang-fix-late-lint-crash, r=oli-obk
Fix crash in internal late lint checking

Fixes #122177
2024-03-08 13:22:28 +01:00
Matthias Krüger
3d71bada5a
Rollup merge of #122173 - compiler-errors:ptr-equality-in-ctfe, r=lcnr
Don't ICE in CTFE if raw/fn-ptr types differ

Fixes #121688

r? lcnr
2024-03-08 13:22:27 +01:00
Matthias Krüger
3e634f8c5c
Rollup merge of #121563 - Jarcho:use_cf, r=petrochenkov
Use `ControlFlow` in visitors.

Follow up to #121256

This does have a few small behaviour changes in some diagnostic output where the visitor will now find the first match rather than the last match. The change in `find_anon_types.rs` has the only affected test. I don't see this being an issue as the last occurrence isn't any better of a choice than the first.
2024-03-08 13:22:26 +01:00
Matthias Krüger
a8e3543b19
Rollup merge of #121194 - beetrees:rustc-raw-args, r=petrochenkov
Refactor pre-getopts command line argument handling

Rebased version of #111658. I've also fixed the Windows CI failure (although I don't have access to Windows to test it myself).
2024-03-08 13:22:25 +01:00
Matthias Krüger
075f1c34d4
Rollup merge of #121025 - oli-obk:taint_after_errors, r=petrochenkov
add known-bug tests for derive failure to detect packed repr

We only taint if it was a normal item. Modules and imports are untouched. Tainting them needs to be done differently, and it's unclear if that would be useful or desirable. If we just taint them into `Res::Err`, we end up losing some duplicate name messages *in the presence of other resolution errors*.

r? `@petrochenkov`
2024-03-08 13:22:25 +01:00
bors
42825768b1 Auto merge of #122078 - gurry:121443-ice-layout-is-sized-alt, r=oli-obk
Check that return type is WF in typeck

Ensures that non-WF types do not pass typeck and then later ICE in MIR/const eval

Fixes #121443
2024-03-08 12:16:42 +00:00
Shoyu Vanilla
6721b392e9 Replace TypeWalker usage with TypeVisitor 2024-03-08 20:49:03 +09:00
yukang
c81521ae54 Fix crash in late internal checking 2024-03-08 19:00:53 +08:00
bors
1b2c53a15d Auto merge of #122182 - matthiaskrgr:rollup-gzimi4c, r=matthiaskrgr
Rollup of 8 pull requests

Successful merges:

 - #118623 (Improve std::fs::read_to_string example)
 - #119365 (Add asm goto support to `asm!`)
 - #120608 (Docs for std::ptr::slice_from_raw_parts)
 - #121832 (Add new Tier-3 target: `loongarch64-unknown-linux-musl`)
 - #121938 (Fix quadratic behavior of repeated vectored writes)
 - #122099 (Add  `#[inline]` to `BTreeMap::new` constructor)
 - #122103 (Make TAITs and ATPITs capture late-bound lifetimes in scope)
 - #122143 (PassWrapper: update for llvm/llvm-project@a331937197)

Failed merges:

 - #122076 (Tweak the way we protect in-place function arguments in interpreters)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-03-08 09:34:05 +00:00
Matthias Krüger
d4d18d240b
Rollup merge of #122103 - compiler-errors:taits-capture-everything, r=oli-obk
Make TAITs and ATPITs capture late-bound lifetimes in scope

This generalizes the behavior that RPITs have, where they duplicate their in-scope lifetimes so that they will always *reify* late-bound lifetimes that they capture. This allows TAITs and ATPITs to properly error when they capture in-scope late-bound lifetimes.

r? `@oli-obk` cc `@aliemjay`

Fixes #122093 and therefore https://github.com/rust-lang/rust/pull/120700#issuecomment-1981213868
2024-03-08 08:19:20 +01:00
Matthias Krüger
7e6a6d0779
Rollup merge of #121832 - heiher:loongarch64-musl, r=wesleywiser
Add new Tier-3 target: `loongarch64-unknown-linux-musl`

MCP: https://github.com/rust-lang/compiler-team/issues/518
2024-03-08 08:19:18 +01:00
Matthias Krüger
d774fbea7c
Rollup merge of #119365 - nbdd0121:asm-goto, r=Amanieu
Add asm goto support to `asm!`

Tracking issue: #119364

This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto).

Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary.

r? ``@Amanieu``
cc ``@ojeda``
2024-03-08 08:19:17 +01:00
bors
14fbc3c005 Auto merge of #120268 - DianQK:otherwise_is_last_variant_switchs, r=oli-obk
Replace the default branch with an unreachable branch If it is the last variant

Fixes #119520. Fixes #110097.

LLVM currently has limited ability to eliminate dead branches in switches, even with the patch of https://github.com/llvm/llvm-project/issues/73446.

The main reasons are as follows:

- Additional costs are required to calculate the range of values, and there exist many scenarios that cannot be analyzed accurately.
- Matching values by bitwise calculation cannot handle odd branches, nor can it handle values like `-1, 0, 1`. See [SimplifyCFG.cpp#L5424](https://github.com/llvm/llvm-project/blob/llvmorg-17.0.6/llvm/lib/Transforms/Utils/SimplifyCFG.cpp#L5424) and https://llvm.godbolt.org/z/qYMqhvMa8
- The current range information is continuous, even if the metadata for the range is submitted. See [ConstantRange.cpp#L1869-L1870](https://github.com/llvm/llvm-project/blob/llvmorg-17.0.6/llvm/lib/IR/ConstantRange.cpp#L1869-L1870).
- The metadata of the range may be lost in passes such as SROA. See https://rust.godbolt.org/z/e7f87vKMK.

Although we can make improvements, I think it would be more appropriate to put this issue to rustc first. After all, we can easily know the possible values.

Note that we've currently found a slow compilation problem in the presence of unreachable branches. See
https://github.com/llvm/llvm-project/issues/78578.

r? compiler
2024-03-08 07:18:17 +00:00
Michael Goulet
025ad403a9 Don't ICE in CTFE if raw/fn-ptr types differ 2024-03-08 02:57:06 +00:00
Michael Goulet
cf299ddb6e Make TAITs capture all higher-ranked lifetimes in scope 2024-03-08 02:10:11 +00:00
bors
79d246112d Auto merge of #122048 - erikdesjardins:inbounds, r=oli-obk
Use GEP inbounds for ZST and DST field offsets

ZST field offsets have been non-`inbounds` since I made [this old layout change](https://github.com/rust-lang/rust/pull/73453/files#diff-160634de1c336f2cf325ff95b312777326f1ab29fec9b9b21d5ee9aae215ecf5). Before that, they would have been `inbounds` due to using `struct_gep`. Using `inbounds` for ZSTs likely doesn't matter for performance, but I'd like to remove the special case.

DST field offsets have been non-`inbounds` since the alignment-aware DST field offset computation was first [implemented](a2557d472e (diff-04fd352da30ca186fe0bb71cc81a503d1eb8a02ca17a3769e1b95981cd20964aR1188)) in 1.6 (back then `GEPi()` would be used for `inbounds`), but I don't think there was any reason for it.

Split out from #121577 / #121665.

r? `@oli-obk`

cc `@RalfJung` -- is there some weird situation where field offsets can't be `inbounds`?

Note that it's fine for `inbounds` offsets to be one-past-the-end, so it's okay even if there's a ZST as the last field in the layout:

> The base pointer has an in bounds address of an allocated object, which means that it points into an allocated object, or to its end. [(link)](https://llvm.org/docs/LangRef.html#getelementptr-instruction)

For https://github.com/rust-lang/unsafe-code-guidelines/issues/93, zero-offset GEP is (now) always `inbounds`:

> Note that getelementptr with all-zero indices is always considered to be inbounds, even if the base pointer does not point to an allocated object. [(link)](https://llvm.org/docs/LangRef.html#getelementptr-instruction)
2024-03-08 02:01:51 +00:00
DianQK
b5bd98d540
Update MIR with MirPatch in UninhabitedEnumBranching 2024-03-08 08:15:14 +08:00
bors
9823f17315 Auto merge of #122151 - GuillaumeGomez:rollup-hfxr9kv, r=GuillaumeGomez
Rollup of 10 pull requests

Successful merges:

 - #119888 (Stabilize the `#[diagnostic]` namespace and `#[diagnostic::on_unimplemented]` attribute)
 - #121089 (Remove `feed_local_def_id`)
 - #122004 (AST validation: Improve handling of inherent impls nested within functions and anon consts)
 - #122087 (Add missing background color for top-level rust documentation page and increase contrast by setting text color to black)
 - #122136 (Include all library files in artifact summary on CI)
 - #122137 (Don't pass a break scope to `Builder::break_for_else`)
 - #122138 (Record mtime in bootstrap's LLVM linker script)
 - #122141 (sync (try_)instantiate_mir_and_normalize_erasing_regions implementation)
 - #122142 (cleanup rustc_infer)
 - #122147 (Make `std::os::unix::ucred` module private)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-03-07 22:43:18 +00:00
Oli Scherer
bed9d1fb7d Add known-bug tests for derive(PartialEq) mismatches with #[repr(packed)] attributes that are not visible before macro expansion 2024-03-07 21:40:11 +00:00
bors
9c3ad802d9 Auto merge of #119199 - dpaoliello:arm64ec, r=petrochenkov
Add arm64ec-pc-windows-msvc target

Introduces the `arm64ec-pc-windows-msvc` target for building Arm64EC ("Emulation Compatible") binaries for Windows.

For more information about Arm64EC see <https://learn.microsoft.com/en-us/windows/arm/arm64ec>.

## Tier 3 policy:

> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)

I will be the maintainer for this target.

> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.

Target uses the `arm64ec` architecture to match LLVM and MSVC, and the `-pc-windows-msvc` suffix to indicate that it targets Windows via the MSVC environment.

> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.

Target name exactly specifies the type of code that will be produced.

> If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.

Done.

> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.

> The target must not introduce license incompatibilities.

Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.

> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).

Understood.

> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.

> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.

> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.

Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.

> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.

> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.

Understood, I am not a member of the Rust team.

> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.

Both `core` and `alloc` are supported.

Support for `std` depends on making changes to the standard library, `stdarch` and `backtrace` which cannot be done yet as they require fixes coming in LLVM 18.

> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.

Documentation is provided in src/doc/rustc/src/platform-support/arm64ec-pc-windows-msvc.md

> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.

> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.

> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.

> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.

Understood.
2024-03-07 20:18:54 +00:00
Guillaume Gomez
2e3bde2bc4
Rollup merge of #122004 - fmease:astvalidator-min-fix, r=compiler-errors
AST validation: Improve handling of inherent impls nested within functions and anon consts

Minimal fix for issue #121607 extracted from PR #120698 for ease of backporting and since I'd like to improve PR #120698 in such a way that it makes AST validator truly robust against such sort of regressions (AST validator is generally *beyond* footgun-y atm). The current version of PR #120698 sort of does that already but there's still room for improvement.

Fixes #89342.
Fixes [after beta-backport] #121607.
Partially addresses #119924 (#120698 aims to fully fix it).

---

### Explainer

The last commit of PR #119505 regressed issue #121607.

Previously we would reject visibilities on associated items with `visibility_not_permitted` if we were in a trait (by checking the parameter `ctxt` of `visit_assoc_item` which was 100% accurate) or if we were in a trait impl (by checking a flag called `in_trait_impl` tracked in `AstValidator` which was/is only accurate if the visitor methods correctly updated it which isn't actually the case giving rise to the old open issue #89342).

In PR #119505, I moved even more state into the `AstValidator` by generalizing the flag `in_trait_impl` to `trait_or_trait_impl` to be able to report more precise diagnostics (modeling *Trait | TraitImpl*). However since we/I didn't update `trait_or_trait_impl` in all places to reflect reality (similar to us not updating `in_trait_impl` before), this lead to https://github.com/rust-lang/rust/issues/121607#issuecomment-1963084636 getting wrongfully rejected. Since PR #119505 we reject visibilities if the “globally tracked” (wrt. to `AstValidator`) `outer_trait_or_trait_impl` is `Some`.

Crucially, when visiting an inherent impl, I never reset `outer_trait_or_trait_impl` back to `None` leading us to believe that `bar` in the stack [`trait Foo` > `fn foo` > `impl Bar` > `pub fn bar`] (from the MCVE) was an inherent associated item (we saw `trait Foo` but not `impl Bar` before it).

The old open issue #89342 is caused by the aforementioned issue of us never updating `in_trait_impl` prior to my PR #119505 / `outer_trait_or_trait` after my PR. Stack: [`impl Default for Foo` > `{` > `impl Foo` > `pub const X`] (we only saw `impl Default for Foo` but not the `impl Foo` before it).

---

This PR is only meant to be a *hot fix*. I plan on completely *rewriting* `AstValidator` from the ground up to not rely on “globally tracked” state like this or at least make it close to impossible to forget updating it when descending into nested items (etc.). Other visitors do a way better job at that (e.g. AST lowering). I actually plan on experimenting with moving more and more logic from `AstValidator` into the AST lowering pass/stage/visitor to follow the [Parse, don't validate](https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/) “pattern”.

---

r? `@compiler-errors`
2024-03-07 18:32:47 +01:00
Guillaume Gomez
4de78d2a8d
Rollup merge of #121089 - oli-obk:create_def_feed, r=petrochenkov
Remove `feed_local_def_id`

best reviewed commit by commit

Basically I returned `TyCtxtFeed` from `create_def` and then preserved that in the local caches

based on https://github.com/rust-lang/rust/pull/121084

r? ````@petrochenkov````
2024-03-07 18:32:47 +01:00
Guillaume Gomez
b0d7f2bb0e
Rollup merge of #119888 - weiznich:stablize_diagnostic_namespace, r=compiler-errors
Stabilize the `#[diagnostic]` namespace and `#[diagnostic::on_unimplemented]` attribute

This PR stabilizes the `#[diagnostic]` attribute namespace and a minimal option of the `#[diagnostic::on_unimplemented]` attribute.

The `#[diagnostic]` attribute namespace is meant to provide a home for attributes that allow users to influence error messages emitted by the compiler. The compiler is not guaranteed to use any of this hints, however it should accept any (non-)existing attribute in this namespace and potentially emit lint-warnings for unused attributes and options. This is meant to allow discarding certain attributes/options in the future to allow fundamental changes to the compiler without the need to keep then non-meaningful options working.

The `#[diagnostic::on_unimplemented]` attribute is allowed to appear on a trait definition. This allows crate authors to hint the compiler to emit a specific error message if a certain trait is not implemented. For the `#[diagnostic::on_unimplemented]` attribute the following options are implemented:

* `message` which provides the text for the top level error message
* `label` which provides the text for the label shown inline in the broken code in the error message
* `note` which provides additional notes.

The `note` option can appear several times, which results in several note messages being emitted. If any of the other options appears several times the first occurrence of the relevant option specifies the actually used value. Any other occurrence generates an lint warning. For any other non-existing option a lint-warning is generated.

All three options accept a text as argument. This text is allowed to contain format parameters referring to generic argument or `Self` by name via the `{Self}` or `{NameOfGenericArgument}` syntax. For any non-existing argument a lint warning is generated.

This allows to have a trait definition like:

```rust
#[diagnostic::on_unimplemented(
    message = "My Message for `ImportantTrait<{A}>` is not implemented for `{Self}`",
    label = "My Label",
    note = "Note 1",
    note = "Note 2"
)]
trait ImportantTrait<A> {}

```

which then generates for the following code

```rust
fn use_my_trait(_: impl ImportantTrait<i32>) {}

fn main() {
    use_my_trait(String::new());
}
```

this error message:

```
error[E0277]: My Message for `ImportantTrait<i32>` is not implemented for `String`
  --> src/main.rs:14:18
   |
14 |     use_my_trait(String::new());
   |     ------------ ^^^^^^^^^^^^^ My Label
   |     |
   |     required by a bound introduced by this call
   |
   = help: the trait `ImportantTrait<i32>` is not implemented for `String`
   = note: Note 1
   = note: Note 2
```

[Playground with the unstable feature](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=05133acce8e1d163d481e97631f17536)

Fixes #111996
2024-03-07 18:32:46 +01:00
DianQK
3d7f8b4e5b
Get all variants to eliminate the default branching if we cannot get the layout of type 2024-03-07 22:58:51 +08:00
DianQK
08ae8380ce
Replace the default branch with an unreachable branch If it is the last variant 2024-03-07 22:58:51 +08:00
DianQK
d8b7b5be7d
Regenerate uninhabited_enum_branching.rs 2024-03-07 22:58:51 +08:00
Oli Scherer
ae50e36dfa Merge collect_mod_item_types query into check_well_formed 2024-03-07 14:26:31 +00:00
Guillaume Gomez
bb582c6d0f
Rollup merge of #122123 - compiler-errors:object-trait-alias-bounds, r=oli-obk
Don't require specifying unrelated assoc types when trait alias is in `dyn` type

Object types must specify the associated types for all of the principal trait ref's supertraits. However, we weren't doing elaboration properly, so we incorrectly errored with erroneous suggestions to specify associated types that were unrelated to that principal trait ref. To fix this, use proper supertrait elaboration when expanding trait aliases in `conv_object_ty_poly_trait_ref`.

**NOTE**: Please use the ignore-whitespace option when reviewing. This only touches a handful of lines.

r? oli-obk or please feel free to reassign.

Fixes #122118
2024-03-07 15:07:09 +01:00
Guillaume Gomez
9bda4e47c7
Rollup merge of #122115 - clubby789:cancel-recoverr, r=compiler-errors
Cancel parsing ever made during recovery

Fixes #122112

It would be nice if diagnostics from recovery were automatically cancelled... 🤔
2024-03-07 15:07:08 +01:00
Guillaume Gomez
66a062af86
Rollup merge of #122114 - saethlin:cant-find-crate-spam, r=WaffleLapkin
Make not finding core a fatal error

Similar to https://github.com/rust-lang/rust/pull/120472, this prevents terminal spam. In particular, it makes the good diagnostic visible when you try to use a target that's not installed.
2024-03-07 15:07:08 +01:00
Guillaume Gomez
0e3764889d
Rollup merge of #121863 - lukas-code:silence-mismatched-super-projections, r=lcnr
silence mismatched types errors for implied projections

Currently, if a trait bound is not satisfied, then we suppress any errors for the trait's supertraits not being satisfied, but still report errors for super projections not being satisfied.

For example:
```rust
trait Super {
    type Assoc;
}
trait Sub: Super<Assoc = ()> {}
```
Before this PR, if `T: Sub` is not satisfied, then errors for `T: Super` are suppressed, but errors for `<T as Super>::Assoc == ()` are still shown. This PR makes it so that errors about super projections not being satisfied are also suppressed.

The errors are only suppressed if the span of the trait obligation matches the span of the super predicate obligation to avoid silencing error that are not related. This PR removes some differences between the spans of supertraits and super projections to make the suppression work correctly.

This PR fixes the majority of the diagnostics fallout when making `Thin` a supertrait of `Sized` (in a future PR).
cc https://github.com/rust-lang/rust/pull/120354#issuecomment-1930585382
cc `@lcnr`
2024-03-07 15:07:05 +01:00
Oli Scherer
ebf1b92417 Use the same collection order as check_mod_type_wf 2024-03-07 13:37:06 +00:00
Oli Scherer
de3fb8d429 Collect mod item types in parallel, just like wfcheck 2024-03-07 12:42:49 +00:00
Gary Guo
0ee0f290a6 Bless aarch64 asm test 2024-03-07 11:57:26 +00:00
Oli Scherer
8206cffc48 Merge check_mod_impl_wf and check_mod_type_wf 2024-03-07 06:27:09 +00:00
bors
aa029ce4d8 Auto merge of #122113 - matthiaskrgr:rollup-5d1jnwi, r=matthiaskrgr
Rollup of 9 pull requests

Successful merges:

 - #121958 (Fix redundant import errors for preload extern crate)
 - #121976 (Add an option to have an external download/bootstrap cache)
 - #122022 (loongarch: add frecipe and relax target feature)
 - #122026 (Do not try to format removed files)
 - #122027 (Uplift some feeding out of `associated_type_for_impl_trait_in_impl` and into queries)
 - #122063 (Make the lowering of `thir::ExprKind::If` easier to follow)
 - #122074 (Add missing PartialOrd trait implementation doc for array)
 - #122082 (remove outdated fixme comment)
 - #122091 (Note why we're using a new thread in `test_get_os_named_thread`)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-03-07 02:30:40 +00:00
Daniel Paoliello
a6a556c2a9 Add arm64ec-pc-windows-msvc target
Introduces the `arm64ec-pc-windows-msvc` target for building Arm64EC ("Emulation Compatible") binaries for Windows.

For more information about Arm64EC see <https://learn.microsoft.com/en-us/windows/arm/arm64ec>.

Tier 3 policy:

> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)

I will be the maintainer for this target.

> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.

Target uses the `arm64ec` architecture to match LLVM and MSVC, and the `-pc-windows-msvc` suffix to indicate that it targets Windows via the MSVC environment.

> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.

Target name exactly specifies the type of code that will be produced.

> If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.

Done.

> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.

> The target must not introduce license incompatibilities.

Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.

> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).

Understood.

> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.

> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.

> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.

Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.

> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.

> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.

Understood, I am not a member of the Rust team.

> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.

Both `core` and `alloc` are supported.

Support for `std` dependends on making changes to the standard library, `stdarch` and `backtrace` which cannot be done yet as the bootstrapping compiler raises a warning ("unexpected `cfg` condition value") for `target_arch = "arm64ec"`.

> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.

Documentation is provided in src/doc/rustc/src/platform-support/arm64ec-pc-windows-msvc.md

> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via @) to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.

> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.

> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.

> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.

Understood.
2024-03-06 17:49:37 -08:00
Michael Goulet
850cc34da2 Don't require specifying unrelated assoc types when trait alias is in dyn type 2024-03-07 01:32:01 +00:00