Upstream change
llvm/llvm-project@6b539f5eb8 changed
`isSectionBitcode` works and it now only respects `.llvm.lto` sections
instead of also `.llvmbc`, which it says was never intended to be used
for LTO. We instead load sections by name, and sniff for raw bitcode by
hand.
r? @nikic
@rustbot label: +llvm-main
rustc_llvm: Link to `zlib` on dragonfly and solaris
On native builds `llvm-config` picks up `zlib` and this gets pased into
the rust build tools, but on cross builds `llvm-config` is explicitly
ignored as it contains information for the host system and cannot be
trusted to be accurate for the target system.
Both DragonFly and Solaris contain `zlib` in the base system, so this is
both a safe assumption and required for a successful cross build unless
`zlib` support is disabled in LLVM.
This is more or less in the same vein as rust-lang#75713 and rust-lang#75655.
Move a local to the `#if` block where it is used
For other cases (LLVM < 17), this was complaining under `-Wall`:
```
warning: llvm-wrapper/PassWrapper.cpp: In function ‘void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef, const char*)’:
warning: llvm-wrapper/PassWrapper.cpp:311:26: warning: unused variable ‘MCInfo’ [-Wunused-variable]
warning: 311 | const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
warning: | ^~~~~~
```
coverage: Don't convert filename/symbol strings to `CString` for FFI
LLVM APIs are usually perfectly happy to accept pointer/length strings, as long as we supply a suitable length value when creating a `StringRef` or `std::string`.
This lets us avoid quite a few intermediate `CString` copies during coverage codegen. It also lets us use an `IndexSet<Symbol>` (instead of an `IndexSet<CString>`) when building the deduplicated filename table.
update llvm-wrapper include to silence deprecation warning
Includes of `include/llvm/Support/Host.h` now emit a deprecated warning: `warning: This header is deprecated, please use llvm/TargetParser/Host.h`.
I don't believe we are using this include.
I don't believe we need to bump the `download-ci-llvm` stamp since these warnings are emitted while building the `llvm-wrapper`.
r? ```@nikic```
CFI: Fix error compiling core with LLVM CFI enabled
Fix#90546 by filtering out global value function pointer types from the type tests, and adding the LowerTypeTests pass to the rustc LTO optimization pipelines.
Add hotness data to LLVM remarks
Slight improvement of https://github.com/rust-lang/rust/pull/113040. This makes sure that if PGO is used, remarks generated using `-Zremark-dir` will include the `Hotness` attribute.
r? `@tmiasko`
On native builds `llvm-config` picks up `zlib` and this gets pased into
the rust build tools, but on cross builds `llvm-config` is explicitly
ignored as it contains information for the host system and cannot be
trusted to be accurate for the target system.
Both DragonFly and Solaris contain `zlib` in the base system, so this is
both a safe assumption and required for a successful cross build unless
`zlib` support is disabled in LLVM.
This is more or less in the same vein as #75713 and #75655.
Fix#90546 by filtering out global value function pointer types from the
type tests, and adding the LowerTypeTests pass to the rustc LTO
optimization pipelines.
Filter out short-lived LLVM diagnostics before they reach the rustc handler
During profiling I saw remark passes being unconditionally enabled: for example `Machine Optimization Remark Emitter`.
The diagnostic remarks enabled by default are [from missed optimizations and opt analyses](https://github.com/rust-lang/rust/pull/113339#discussion_r1259480303). They are created by LLVM, passed to the diagnostic handler on the C++ side, emitted to rust, where they are unpacked, C++ strings are converted to rust, etc.
Then they are discarded in the vast majority of the time (i.e. unless some kind of `-Cremark` has enabled some of these passes' output to be printed).
These unneeded allocations are very short-lived, basically only lasting between the LLVM pass emitting them and the rust handler where they are discarded. So it doesn't hugely impact max-rss, and is only a slight reduction in instruction count (cachegrind reports a reduction between 0.3% and 0.5%) _on linux_. It's possible that targets without `jemalloc` or with a worse allocator, may optimize these less.
It is however significant in the aggregate, looking at the total number of allocated bytes:
- it's the biggest source of allocations according to dhat, on the benchmarks I've tried e.g. `syn` or `cargo`
- allocations on `syn` are reduced by 440MB, 17% (from 2440722647 bytes total, to 2030461328 bytes)
- allocations on `cargo` are reduced by 6.6GB, 19% (from 35371886402 bytes total, to 28723987743 bytes)
Some of these diagnostics objects [are allocated in LLVM](https://github.com/rust-lang/rust/pull/113339#discussion_r1252387484) *before* they're emitted to our diagnostic handler, where they'll be filtered out. So we could remove those in the future, but that will require changing a few LLVM call-sites upstream, so I left a FIXME.
this will eliminate many short-lived allocations (e.g. 20% of the memory used
building cargo) when unpacking the diagnostic and converting its various
C++ strings into rust strings, just to be filtered out most of the time.
getHostCPUName calls into libkstat but as of
LLVM 16.0.6 libLLVMTargetParser is not explicitly
linked against libkstat causing builds to fail
due to undefined symbols.
See also: llvm/llvm-project#64186
Both GCC and Clang write by default a `.comment` section with compiler
information:
```txt
$ gcc -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] GCC: (GNU) 11.2.0
$ clang -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] clang version 14.0.1 (https://github.com/llvm/llvm-project.git c62053979489ccb002efe411c3af059addcb5d7d)
```
They also implement the `-Qn` flag to avoid doing so:
```txt
$ gcc -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
$ clang -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
```
So far, `rustc` only does it for WebAssembly targets and only
when debug info is enabled:
```txt
$ echo 'fn main(){}' | rustc --target=wasm32-unknown-unknown --emit=llvm-ir -Cdebuginfo=2 - && grep llvm.ident rust_out.ll
!llvm.ident = !{!27}
```
In the RFC part of this PR it was decided to always add
the information, which gets us closer to other popular compilers.
An opt-out flag like GCC and Clang may be added later on if deemed
necessary.
Implementation-wise, this covers both `ModuleLlvm::new()` and
`ModuleLlvm::new_metadata()` cases by moving the addition to
`context::create_module` and adds a few test cases.
ThinLTO also sees the `llvm.ident` named metadata duplicated (in
temporary outputs), so this deduplicates it like it is done for
`wasm.custom_sections`. The tests also check this duplication does
not take place.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Support `--print KIND=PATH` command line syntax
As is already done for `--emit KIND=PATH` and `-L KIND=PATH`.
In the discussion of #110785, it was pointed out that `--print KIND=PATH` is nicer than trying to apply the single global `-o` path to `--print`'s output, because in general there can be multiple print requests within a single rustc invocation, and anyway `-o` would already be used for a different meaning in the case of `link-args` and `native-static-libs`.
I am interested in using `--print cfg=PATH` in Buck2. Currently Buck2 works around the lack of support for `--print KIND=PATH` by [indirecting through a Python wrapper script](d43cf3a51a/prelude/rust/tools/get_rustc_cfg.py) to redirect rustc's stdout into the location dictated by the build system.
From skimming Cargo's usages of `--print`, it definitely seems like it would benefit from `--print KIND=PATH` too. Currently it is working around the lack of this by inserting `--crate-name=___ --print=crate-name` so that it can look for a line containing `___` as a delimiter between the 2 other `--print` informations it actually cares about. This is commented as a "HACK" and "abuse". 31eda6f7c3/src/cargo/core/compiler/build_context/target_info.rs (L242) (FYI `@weihanglo` as you dealt with this recently in https://github.com/rust-lang/cargo/pull/11633.)
Mentioning reviewers active in #110785: `@fee1-dead` `@jyn514` `@bjorn3`
Resurrect: rustc_llvm: Add a -Z `print-codegen-stats` option to expose LLVM statistics.
This resurrects PR https://github.com/rust-lang/rust/pull/104000, which has sat idle for a while. And I want to see the effect of stack-move optimizations on LLVM (like https://reviews.llvm.org/D153453) :).
I have applied the changes requested by `@oli-obk` and `@nagisa` https://github.com/rust-lang/rust/pull/104000#discussion_r1014625377 and https://github.com/rust-lang/rust/pull/104000#discussion_r1014642482 in the latest commits.
r? `@oli-obk`
-----
LLVM has a neat [statistics](https://llvm.org/docs/ProgrammersManual.html#the-statistic-class-stats-option) feature that tracks how often optimizations kick in. It's very handy for optimization work. Since we expose the LLVM pass timings, I thought it made sense to expose the LLVM statistics too.
-----
(Edit: fix broken link
(Edit2: fix segmentation fault and use malloc
If `rustc` is built with
```toml
[llvm]
assertions = true
```
Then you can see like
```
rustc +stage1 -Z print-codegen-stats -C opt-level=3 tmp.rs
===-------------------------------------------------------------------------===
... Statistics Collected ...
===-------------------------------------------------------------------------===
3 aa - Number of MayAlias results
193 aa - Number of MustAlias results
531 aa - Number of NoAlias results
...
```
And the current default build emits only
```
$ rustc +stage1 -Z print-codegen-stats -C opt-level=3 tmp.rs
===-------------------------------------------------------------------------===
... Statistics Collected ...
===-------------------------------------------------------------------------===
$
```
This might be better to emit the message to tell assertion flag necessity, but now I can't find how to do that...
CI: build CMake 3.20 to support LLVM 17
LLVM 17 will require CMake at least 3.20, so we have to go back to building our own CMake on the Linux x64 dist builder.
r? `@nikic`
LLVM has a neat [statistics] feature that tracks how often optimizations kick
in. It's very handy for optimization work. Since we expose the LLVM pass
timings, I thought it made sense to expose the LLVM statistics too.
[statistics]: https://llvm.org/docs/ProgrammersManual.html#the-statistic-class-stats-option
Remove `LLVMRustCoverageHashCString`
Coverage has two FFI functions for computing the hash of a byte string. One takes a ptr/len pair (`LLVMRustCoverageHashByteArray`), and the other takes a NUL-terminated C string (`LLVMRustCoverageHashCString`).
But on closer inspection, the C string version is unnecessary. The calling-side code converts a Rust `&str` into a `CString`, and the C++ code then immediately turns it back into a ptr/len string before actually hashing it. So we can just call the ptr/len version directly instead.
---
This PR also fixes a bug in the C++ declaration of `LLVMRustCoverageHashByteArray`. It should be `size_t`, since that's what is declared and passed on the Rust side, and it's what `StrRef`'s constructor expects to receive on the callee side.
Coverage has two FFI functions for computing the hash of a byte string. One
takes a ptr/len pair, and the other takes a NUL-terminated C string.
But on closer inspection, the C string version is unnecessary. The calling-side
code converts a Rust `&str` into a C string, and the C++ code then immediately
turns it back into a ptr/len string before actually hashing it.
Adds support for LLVM [SafeStack] which provides backward edge control
flow protection by separating the stack into two parts: data which is
only accessed in provable safe ways is allocated on the normal stack
(the "safe stack") and all other data is placed in a separate allocation
(the "unsafe stack").
SafeStack support is enabled by passing `-Zsanitizer=safestack`.
[SafeStack]: https://clang.llvm.org/docs/SafeStack.html
Remove the ThinLTO CU hack
This reverts #46722, commit e0ab5d5feb.
Since #111167, commit 10b69dde3f, we are
generating DWARF subprograms in a way that is meant to be more compatible
with LLVM's expectations, so hopefully we don't need this workaround
rewriting CUs anymore.
This reverts #46722, commit e0ab5d5feb.
Since #111167, commit 10b69dde3f, we are
generating DWARF subprograms in a way that is meant to be more compatible
with LLVM's expectations, so hopefully we don't need this workaround
rewriting CUs anymore.
Expand the LLVM coverage of `--print target-cpus`
We've been relying on a custom patch to add `MCSubtargetInfo::getCPUTable`
for `rustc --print target-cpus`, and just printing that it's not supported
on external LLVM builds. LLVM `main` now has `getAllProcessorDescriptions`
that can replace ours, so now we try to use that. In addition, the fallback
path can at least print the native and default cpu options.
There were also some mismatches in the function signatures here between
`LLVM_RUSTLLVM` and otherwise; this is now mitigated by sharing these
functions and only using cpp to adjust the function bodies.
debuginfo: split method declaration and definition
When we're adding a method to a type DIE, we only want a DW_AT_declaration
there, because LLVM LTO can't unify type definitions when a child DIE is a
full subprogram definition. Now the subprogram definition gets added at the
CU level with a specification link back to the abstract declaration.
Both GCC and Clang write debuginfo this way for C++ class methods.
Fixes#109730.
Fixes#109934.
We've been relying on a custom patch to add `MCSubtargetInfo::getCPUTable`
for `rustc --print target-cpus`, and just printing that it's not supported
on external LLVM builds. LLVM `main` now has `getAllProcessorDescriptions`
that can replace ours, so now we try to use that. In addition, the fallback
path can at least print the native and default cpu options.
There were also some mismatches in the function signatures here between
`LLVM_RUSTLLVM` and otherwise; this is now mitigated by sharing these
functions and only using cpp to adjust the function bodies.
When we're adding a method to a type DIE, we only want a DW_AT_declaration
there, because LLVM LTO can't unify type definitions when a child DIE is a
full subprogram definition. Now the subprogram definition gets added at the
CU level with a specification link back to the abstract declaration.
Fix printing native CPU on cross-compiled compiler.
If `rustc` is cross-compiled from a different host, then the "native" entry in `rustc --print=target-cpus` would not appear. There is a check in the printing code that will avoid printing the "native" entry if the user has passed `--target`. However, that check was comparing the `--target` value with the `LLVM_TARGET_TRIPLE` which is the triple of the host that `rustc` was built on (the "build" target in Rust lingo), not the target it was being built for (the "host" in Rust lingo). This fixes it to use the target that LLVM was built for (which I'm pretty sure this is the correct function to determine that).
This fixes the cpu listing for aarch64-apple-darwin which is built on CI using the x86_64-apple-darwin host.
Initial support for loongarch64-unknown-linux-gnu
Hi, We hope to add a new port in rust for LoongArch.
LoongArch intro
LoongArch is a RISC style ISA which is independently designed by Loongson
Technology in China. It is divided into two versions, the 32-bit version (LA32)
and the 64-bit version (LA64). LA64 applications have application-level
backward binary compatibility with LA32 applications. LoongArch is composed of
a basic part (Loongson Base) and an expanded part. The expansion part includes
Loongson Binary Translation (LBT), Loongson VirtualiZation (LVZ), Loongson SIMD
EXtension (LSX) and Loongson Advanced SIMD EXtension(LASX).
Currently the LA464 processor core supports LoongArch ISA and the Loongson
3A5000 processor integrates 4 64-bit LA464 cores. LA464 is a four-issue 64-bit
high-performance processor core. It can be used as a single core for high-end
embedded and desktop applications, or as a basic processor core to form an
on-chip multi-core system for server and high-performance machine applications.
Documentations:
ISA:
https://loongson.github.io/LoongArch-Documentation/LoongArch-Vol1-EN.html
ABI:
https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html
More docs can be found at:
https://loongson.github.io/LoongArch-Documentation/README-EN.html
Since last year, we have locally adapted two versions of rust, rust1.41 and rust1.57, and completed the test locally.
I'm not sure if I'm submitting all the patches at once, so I split up the patches and here's one of the commits
`-Cdebuginfo=1` was never line tables only and
can't be due to backwards compatibility issues.
This was clarified and an option for line tables only
was added. Additionally an option for line info
directives only was added, which is well needed for
some targets. The debug info options should now
behave the same as clang's debug info options.
SymbolWrapper.cpp doesn't use std::optional or llvm::Optional, so this
patch removes the extraneous include. Note that llvm/ADT/Optional.h
has been deprecated upstream. This patch ensures that
SymbolWrapper.cpp continues to compile even after the upcoming removal
of Optional.h.
Remove legacy PM leftovers
This drops two leftovers of legacy PM usage:
* We don't need to initialize passes anymore.
* The pass listing was still using legacy PM passes. Replace it with the corresponding new PM listing.
llvm-wrapper: adapt for LLVM API change
No functional changes intended.
The LLVM commit e6b02214c6 added `TargetExtTyID` to the `TypeID` enum. This adapts `RustWrapper` accordingly.
Convert all the crates that have had their diagnostic migration
completed (except save_analysis because that will be deleted soon and
apfloat because of the licensing problem).
Add LLVM KCFI support to the Rust compiler
This PR adds LLVM Kernel Control Flow Integrity (KCFI) support to the Rust compiler. It initially provides forward-edge control flow protection for operating systems kernels for Rust-compiled code only by aggregating function pointers in groups identified by their return and parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by identifying C char and integer type uses at the time types are encoded (see Type metadata in the design document in the tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Thank you again, `@bjorn3,` `@eddyb,` `@nagisa,` and `@ojeda,` for all the help!