Adjust frame IP in backtraces relative to image base for SGX target
This is followup to https://github.com/rust-lang/backtrace-rs/pull/566.
The backtraces printed by `panic!` or generated by `std::backtrace::Backtrace` in SGX target are not usable. The frame addresses need to be relative to image base address so they can be used for symbol resolution. Here's an example panic backtrace generated before this change:
```
$ cargo r --target x86_64-fortanix-unknown-sgx
...
stack backtrace:
0: 0x7f8fe401d3a5 - <unknown>
1: 0x7f8fe4034780 - <unknown>
2: 0x7f8fe401c5a3 - <unknown>
3: 0x7f8fe401d1f5 - <unknown>
4: 0x7f8fe401e6f6 - <unknown>
```
Here's the same panic after this change:
```
$ cargo +stage1 r --target x86_64-fortanix-unknown-sgx
stack backtrace:
0: 0x198bf - <unknown>
1: 0x3d181 - <unknown>
2: 0x26164 - <unknown>
3: 0x19705 - <unknown>
4: 0x1ef36 - <unknown>
```
cc `@jethrogb` and `@workingjubilee`
Add Seek::seek_relative
The `BufReader` struct has a `seek_relative` method because its `Seek::seek` implementation involved dumping the internal buffer (https://github.com/rust-lang/rust/issues/31100).
Unfortunately, there isn't really a good way to take advantage of that method in generic code. This PR adds the same method to the main `Seek` trait with the straightforward default method, and an override for `BufReader` that calls its implementation.
_Also discussed in [this](https://internals.rust-lang.org/t/add-seek-seek-relative/19546) internals.rust-lang.org thread._
Add T: ?Sized to `RwLockReadGuard` and `RwLockWriteGuard`'s Debug impls.
For context, `MutexGuard` has `+ ?Sized` on its `Debug` impl, and all three have `+ ?Sized` on their `Display` impls.
It looks like the `?Sized` was just missed when the impls were added (the impl for `MutexGuard` was added in the same PR (https://github.com/rust-lang/rust/pull/38006) with support for `T: Debug + ?Sized`, and `RwLock*Guard`s did allow `T: ?Sized` types already); the `Display` impls were added later (https://github.com/rust-lang/rust/pull/42822) with support for `T: Debug + ?Sized` types.
I think this needs a T-libs-api FCP? I'm not sure if this also needs an ACP. If so I can make one.
These are changes to (stable) trait impls on stable types so will be insta-stable.
`@rustbot` label +T-libs-api
Remove asmjs
Fulfills [MCP 668](https://github.com/rust-lang/compiler-team/issues/668).
`asmjs-unknown-emscripten` does not work as-specified, and lacks essential upstream support for generating asm.js, so it should not exist at all.
Add `std:#️⃣:{DefaultHasher, RandomState}` exports (needs FCP)
This implements rust-lang/libs-team#267 to move the libstd hasher types to `std::hash` where they belong, instead of `std::collections::hash_map`.
<details><summary>The below no longer applies, but is kept for clarity.</summary>
This is a small refactor for #27242, which moves the definitions of `RandomState` and `DefaultHasher` into `std::hash`, but in a way that won't be noticed in the public API.
I've opened rust-lang/libs-team#267 as a formal ACP to move these directly into the root of `std::hash`, but for now, they're at least separated out from the collections code in a way that will make moving that around easier.
I decided to simply copy the rustdoc for `std::hash` from `core::hash` since I think it would be ideal for the two to diverge longer-term, especially if the ACP is accepted. However, I would be willing to factor them out into a common markdown document if that's preferred.
</details>
The initial probe-for-empty-source by stack_buffer_copy only detected EOF
if the source was empty but not when it was merely small which lead to
additional calls to read() after Ok(0) had already been returned
in the stack copy routine
It now keeps track of initialized bytes to avoid reinitialization.
It also keeps track of read sizes to avoid initializing more bytes
than the reader needs. This is important when passing a huge vector to a
Read that only has a few bytes to offer and doesn't implement read_buf().
Fix switch_stdout_to on Windows7
The `switch_stdout_to` test was broken on Windows7, as deleting the temporary test folder would fail since the `switch-stdout-output` file we redirected the stdout to is never closed, and it's impossible on Win7 to delete an opened file.
To fix this issue, we make `switch_stdout_to` return the previous handle. Using this, we add a new `switch_stdout_to` call at the end of the test to return the stdio handles to their original state, and recover the handle to the file we opened. This handle is automatically closed at the end of the function, which should allow the temporary test folder to be deleted properly.
Time in UNIX system calls counts from the epoch, 1970-01-01. The timespec
struct used in various system calls represents this as a number of seconds and
a number of nanoseconds. Nanoseconds are required to be between 0 and
999_999_999, because the portion outside that range should be represented in
the seconds field; if nanoseconds were larger than 999_999_999, the seconds
field should go up instead.
Suppose you ask for the time 1969-12-31, what time is that? On UNIX systems
that support times before the epoch, that's seconds=-86400, one day before the
epoch. But now, suppose you ask for the time 1969-12-31 23:59:00.1. In other
words, a tenth of a second after one minute before the epoch. On most UNIX
systems, that's represented as seconds=-60, nanoseconds=100_000_000. The macOS
bug is that it returns seconds=-59, nanoseconds=-900_000_000.
While that's in some sense an accurate description of the time (59.9 seconds
before the epoch), that violates the invariant of the timespec data structure:
nanoseconds must be between 0 and 999999999. This causes this assertion in the
Rust standard library.
So, on macOS, if we get a Timespec value with seconds less than or equal to
zero, and nanoseconds between -999_999_999 and -1 (inclusive), we can add
1_000_000_000 to the nanoseconds and subtract 1 from the seconds, and then
convert. The resulting timespec value is still accepted by macOS, and when fed
back into the OS, produces the same results. (If you set a file's mtime with
that timestamp, then read it back, you get back the one with negative
nanoseconds again.)
Co-authored-by: Josh Triplett <josh@joshtriplett.org>
The switch_stdout_to test was broken on Windows7, as the test
infrastructure would refuse to delete the temporary test folder because
the switch-stdout-output file we redirected the stdout to was still
opened.
To fix this issue, we make switch_stdout_to return the previous handle,
and add a new switch_stdout_to call at the end of the test to return the
stdio handles to their original state. The handle the second
switch_stdout_to returns will be automatically closed, which should
allow the temporary test folder to be deleted properly.
Increase the reach of panic_immediate_abort
I wanted to use/abuse this recently as part of another project, and I was surprised how many panic-related things were left in my binaries if I built a large crate with the feature enabled along with LTO. These changes get all the panic-related symbols that I could find out of my set of locally installed Rust utilities.
Create `windows/api.rs` for safer FFI
FFI is inherently unsafe. For memory safety we need to assert that some contract is being upheld on both sides of the FFI, though of course we can only ever check our side. In Rust, `unsafe` blocks are used to assert safety and `// SAFETY` comments describing why it is safe. Currently in sys/windows we have a lot of this unsafety spread all over the place, with variations on the same unsafe patterns repeated. And because of the repitition and frequency, we're a bit lax with the safety comments.
This PR aims to fix this and to make FFI safety more auditable by creating an `api` module with the goal of centralising and consolidating this unsafety. It contains thin wrappers around the Windows API that make most functions safe to call or, if that's not possible, then at least safer. Note that its goal is *only* to address safety. It does not stray far from the Windows API and intentionally does not attempt to make higher lever wrappers around, for example, file handles. This is better left to the existing modules. The windows/api.rs file has a top level comment to help future contributors understand the intent of the module and the design decisions made.
I chose two functions as a first tentative step towards the above goal:
- [`GetLastError`](https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-getlasterror) is trivially safe. There's no reason to wrap it in an `unsafe` block every time. So I simply created a safe `get_last_error` wrapper.
- [`SetFileInformationByHandle`](https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-setfileinformationbyhandle) is more complex. It essentially takes a generic type but over a C API which necessitates some amount of ceremony. Rather than implementing similar unsafe patterns in multiple places, I provide a safe `set_file_information_by_handle` that takes a Rusty generic type and handles converting that to the form required by the C FFI.
r? libs
Hide internal methods from documentation
The two methods here are perma-unstable and only made public for technical reasons. There is no reason to show them in documentation.
`@rustbot` label +A-docs
Rollup of 6 pull requests
Successful merges:
- #114998 (feat(docs): add cargo-pgo to PGO documentation 📝)
- #116868 (Tweak suggestion span for outer attr and point at item following invalid inner attr)
- #117240 (Fix documentation typo in std::iter::Iterator::collect_into)
- #117241 (Stash and cancel cycle errors for auto trait leakage in opaques)
- #117262 (Create a new ConstantKind variant (ZeroSized) for StableMIR)
- #117266 (replace transmute by raw pointer cast)
r? `@ghost`
`@rustbot` modify labels: rollup