stabilise array methods
Closes#76118
Stabilises the remaining array methods
FCP is yet to be carried out for this
There wasn't a clear consensus on the naming, but all the other alternatives had some flaws as discussed in the tracking issue and there was a silence on this issue for a year
Implement iterator specialization traits on more adapters
This adds
* `TrustedLen` to `Skip` and `StepBy`
* `TrustedRandomAccess` to `Skip`
* `InPlaceIterable` and `SourceIter` to `Copied` and `Cloned`
The first two might improve performance in the compiler itself since `skip` is used in several places. Constellations that would exercise the last point are probably rare since it would require an owning iterator that has references as Items somewhere in its iterator pipeline.
Improvements for `Skip`:
```
# old
test iter::bench_skip_trusted_random_access ... bench: 8,335 ns/iter (+/- 90)
# new
test iter::bench_skip_trusted_random_access ... bench: 2,753 ns/iter (+/- 27)
```
Add Ipv6Addr::is_ipv4_mapped
This change consists of cherry-picking the content from the original PR[1], which got closed due to inactivity, and applying the following changes:
* Resolving merge conflicts (obviously)
* Linked to to_ipv4_mapped instead of to_ipv4 in the documentation (seems more appropriate)
* Added the must_use and rustc_const_unstable attributes the original didn't have
I think it's a reasonably useful method to have.
[1] https://github.com/rust-lang/rust/pull/86490
Use `bool` instead of `PartiolOrd` as return value of the comparison closure in `{slice,Iteraotr}::is_sorted_by`
Changes the function signature of the closure given to `{slice,Iteraotr}::is_sorted_by` to return a `bool` instead of a `PartiolOrd` as suggested by the libs-api team here: https://github.com/rust-lang/rust/issues/53485#issuecomment-1766411980.
This means these functions now return true if the closure returns true for all the pairs of values.
Stabilize single-field offset_of
This PR stabilizes offset_of for a single field. There has been some further discussion at https://github.com/rust-lang/rust/issues/106655 about whether this is advisable; I'm opening the PR anyway so that the code is available.
Change return type of unstable `Waker::noop()` from `Waker` to `&Waker`.
The advantage of this is that it does not need to be assigned to a variable to be used in a `Context` creation, which is the most common thing to want to do with a noop waker. It also avoids unnecessarily executing the dynamically dispatched drop function when the noop waker is dropped.
If an owned noop waker is desired, it can be created by cloning, but the reverse is harder to do since it requires declaring a constant. Alternatively, both versions could be provided, like `futures::task::noop_waker()` and `futures::task::noop_waker_ref()`, but that seems to me to be API clutter for a very small benefit, whereas having the `&'static` reference available is a large reduction in boilerplate.
[Previous discussion on the tracking issue starting here](https://github.com/rust-lang/rust/issues/98286#issuecomment-1862159766)
Stabilize `slice_first_last_chunk`
This PR does a few different things based around stabilizing `slice_first_last_chunk`. They are split up so this PR can be by-commit reviewed, I can move parts to a separate PR if desired.
This feature provides a very elegant API to extract arrays from either end of a slice, such as for parsing integers from binary data.
## Stabilize `slice_first_last_chunk`
ACP: https://github.com/rust-lang/libs-team/issues/69
Implementation: https://github.com/rust-lang/rust/issues/90091
Tracking issue: https://github.com/rust-lang/rust/issues/111774
This stabilizes the functionality from https://github.com/rust-lang/rust/issues/111774:
```rust
impl [T] {
pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>;
pub fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>;
pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>;
pub fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>;
pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>;
pub fn split_first_chunk_mut<const N: usize>(&mut self) -> Option<(&mut [T; N], &mut [T])>;
pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>;
pub fn split_last_chunk_mut<const N: usize>(&mut self) -> Option<(&mut [T], &mut [T; N])>;
}
```
Const stabilization is included for all non-mut methods, which are blocked on `const_mut_refs`. This change includes marking the trivial function `slice_split_at_unchecked` const-stable for internal use (but not fully stable).
## Remove `split_array` slice methods
Tracking issue: https://github.com/rust-lang/rust/issues/90091
Implementation: https://github.com/rust-lang/rust/pull/83233#pullrequestreview-780315524
This PR also removes the following unstable methods from the `split_array` feature, https://github.com/rust-lang/rust/issues/90091:
```rust
impl<T> [T] {
pub fn split_array_ref<const N: usize>(&self) -> (&[T; N], &[T]);
pub fn split_array_mut<const N: usize>(&mut self) -> (&mut [T; N], &mut [T]);
pub fn rsplit_array_ref<const N: usize>(&self) -> (&[T], &[T; N]);
pub fn rsplit_array_mut<const N: usize>(&mut self) -> (&mut [T], &mut [T; N]);
}
```
This is done because discussion at #90091 and its implementation PR indicate a strong preference for nonpanicking APIs that return `Option`. The only difference between functions under the `split_array` and `slice_first_last_chunk` features is `Option` vs. panic, so remove the duplicates as part of this stabilization.
This does not affect the array methods from `split_array`. We will want to revisit these once `generic_const_exprs` is further along.
## Reverse order of return tuple for `split_last_chunk{,_mut}`
An unresolved question for #111774 is whether to return `(preceding_slice, last_chunk)` (`(&[T], &[T; N])`) or the reverse (`(&[T; N], &[T])`), from `split_last_chunk` and `split_last_chunk_mut`. It is currently implemented as `(last_chunk, preceding_slice)` which matches `split_last -> (&T, &[T])`. The first commit changes these to `(&[T], &[T; N])` for these reasons:
- More consistent with other splitting methods that return multiple values: `str::rsplit_once`, `slice::split_at{,_mut}`, `slice::align_to` all return tuples with the items in order
- More intuitive (arguably opinion, but it is consistent with other language elements like pattern matching `let [a, b, rest @ ..] ...`
- If we ever added a varidic way to obtain multiple chunks, it would likely return something in order: `.split_many_last::<(2, 4)>() -> (&[T], &[T; 2], &[T; 4])`
- It is the ordering used in the `rsplit_array` methods
I think the inconsistency with `split_last` could be acceptable in this case, since for `split_last` the scalar `&T` doesn't have any internal order to maintain with the other items.
## Unresolved questions
Do we want to reserve the same names on `[u8; N]` to avoid inference confusion? https://github.com/rust-lang/rust/pull/117561#issuecomment-1793388647
---
`slice_first_last_chunk` has only been around since early 2023, but `split_array` has been around since 2021.
`@rustbot` label -T-libs +T-libs-api -T-libs +needs-fcp
cc `@rust-lang/wg-const-eval,` `@scottmcm` who raised this topic, `@clarfonthey` implementer of `slice_first_last_chunk` `@jethrogb` implementer of `split_array`
Zulip discussion: https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Stabilizing.20array-from-slice.20*something*.3FFixes: #111774
This stabilizes all methods under `slice_first_last_chunk`.
Additionally, it const stabilizes the non-mut functions and moves the `_mut`
functions under `const_slice_first_last_chunk`. These are blocked on
`const_mut_refs`.
As part of this change, `slice_split_at_unchecked` was marked const-stable for
internal use (but not fully stable).
Add `IntoAsyncIterator`
This introduces the `IntoAsyncIterator` trait and uses it in the desugaring of the unstable `for await` loop syntax. This is mostly added for symmetry with `Iterator` and `IntoIterator`.
r? `@compiler-errors`
cc `@rust-lang/libs-api,` `@rust-lang/wg-async`
This change consists of cherry-picking the content from the original
PR[1], which got closed due to inactivity, and applying the following
changes:
* Resolving merge conflicts (obviously)
* Linked to to_ipv4_mapped instead of to_ipv4 in the documentation (seems
more appropriate)
* Added the must_use and rustc_const_unstable attributes the original
didn't have
I think it's a reasonably useful method.
[1] https://github.com/rust-lang/rust/pull/86490
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Add support for making lib features internal
We have the notion of an "internal" lang feature: a feature that is never intended to be stabilized, and using which can cause ICEs and other issues without that being considered a bug.
This extends that idea to lib features as well. It is an alternative to https://github.com/rust-lang/rust/pull/115623: instead of using an attribute to declare lib features internal, we simply do this based on the name. Everything ending in `_internals` or `_internal` is considered internal.
Then we rename `core_intrinsics` to `core_intrinsics_internal`, which fixes https://github.com/rust-lang/rust/issues/115597.
The functionality of these methods from `split_array` has been absorbed by the
`slice_first_last_chunk` feature. This only affects the methods on slices,
not those with the same name that are implemented on array types.
Also adjusts testing to reflect this change.
Remove option_payload_ptr; redundant to offset_of
The `option_payload_ptr` intrinsic is no longer required as `offset_of` supports traversing enums (#114208). This PR removes it in order to dogfood offset_of (as suggested at https://github.com/rust-lang/rust/issues/106655#issuecomment-1790907626). However, it will not build until those changes reach beta (which I think is within the next 8 days?) so I've opened it as a draft.
Add `std:#️⃣:{DefaultHasher, RandomState}` exports (needs FCP)
This implements rust-lang/libs-team#267 to move the libstd hasher types to `std::hash` where they belong, instead of `std::collections::hash_map`.
<details><summary>The below no longer applies, but is kept for clarity.</summary>
This is a small refactor for #27242, which moves the definitions of `RandomState` and `DefaultHasher` into `std::hash`, but in a way that won't be noticed in the public API.
I've opened rust-lang/libs-team#267 as a formal ACP to move these directly into the root of `std::hash`, but for now, they're at least separated out from the collections code in a way that will make moving that around easier.
I decided to simply copy the rustdoc for `std::hash` from `core::hash` since I think it would be ideal for the two to diverge longer-term, especially if the ACP is accepted. However, I would be willing to factor them out into a common markdown document if that's preferred.
</details>
Stabilize `const_maybe_uninit_zeroed` and `const_mem_zeroed`
Make `MaybeUninit::zeroed` and `mem::zeroed` const stable. Newly stable API:
```rust
// core::mem
pub const unsafe fn zeroed<T>() ->;
impl<T> MaybeUninit<T> {
pub const fn zeroed() -> MaybeUninit<T>;
}
```
This relies on features based around `const_mut_refs`. Per `@RalfJung,` this should be OK since we do not leak any `&mut` to the user.
For this to be possible, intrinsics `assert_zero_valid` and `assert_mem_uninitialized_valid` were made const stable.
Tracking issue: #91850
Zulip discussion: https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/.60const_mut_refs.60.20dependents
r? libs-api
`@rustbot` label -T-libs +T-libs-api +A-const-eval
cc `@RalfJung` `@oli-obk` `@rust-lang/wg-const-eval`
Make `MaybeUninit::zeroed` const stable. Newly stable API:
// core::mem
impl<T> MaybeUninit<T> {
pub const fn zeroed() -> MaybeUninit<T>;
}
Use of `const_mut_refs` should be acceptable since we do not leak the
mutability.
Tracking issue: #91850
Derive `Ord`, `PartialOrd` and `Hash` for `SocketAddr*`
Fixes#116711
The main pain of this PR is to fix the buggy impl of `Ord` for `SocketAddrV6`, which ignored half of the fields (while `PartialEq` is derived):
4603f0b8af/library/core/src/net/socket_addr.rs (L99-L106)4603f0b8af/library/core/src/net/socket_addr.rs (L676)
For me it looks like a simple copy-paste error made in https://github.com/rust-lang/rust/pull/72239 (copy from v4 impl) (cc `@hch12907),` as I don't see this behavior being mentioned anywhere on the PR and it also does not respect `cmp` trait "rules". I also do not see any reasons for those impls to _not_ be derived.
It's a shame we did not notice this for 28 versions/3 years. I guess this is a bug fix, but I'm not sure what the process here should be.
r? libs
optimize zipping over array iterators
Fixes#115339 (somewhat)
the new assembly:
```asm
zip_arrays:
.cfi_startproc
vmovups (%rdx), %ymm0
leaq 32(%rsi), %rcx
vxorps %xmm1, %xmm1, %xmm1
vmovups %xmm1, -24(%rsp)
movq $0, -8(%rsp)
movq %rsi, -88(%rsp)
movq %rdi, %rax
movq %rcx, -80(%rsp)
vmovups %ymm0, -72(%rsp)
movq $0, -40(%rsp)
movq $32, -32(%rsp)
movq -24(%rsp), %rcx
vmovups (%rsi,%rcx), %ymm0
vorps -72(%rsp,%rcx), %ymm0, %ymm0
vmovups %ymm0, (%rsi,%rcx)
vmovups (%rsi), %ymm0
vmovups %ymm0, (%rdi)
vzeroupper
retq
```
This is still longer than the slice version given in the issue but at least it eliminates the terrible `vpextrb`/`orb` chain. I guess this is due to excessive memcpys again (haven't looked at the llvmir)?
The `TrustedLen` specialization is a drive-by change since I had to do something for the default impl anyway to be able to specialize the `TrustedRandomAccessNoCoerce` impl.