Make useless_ptr_null_checks smarter about some std functions
This teaches the `useless_ptr_null_checks` lint that some std functions can't ever return null pointers, because they need to point to valid data, get references as input, etc.
This is achieved by introducing an `#[rustc_never_returns_null_ptr]` attribute and adding it to these std functions (gated behind bootstrap `cfg_attr`).
Later on, the attribute could maybe be used to tell LLVM that the returned pointer is never null. I don't expect much impact of that though, as the functions are pretty shallow and usually the input data is already never null.
Follow-up of PR #113657Fixes#114442
"no method" errors on standard library types
The standard library developer can annotate methods on e.g.
`BTreeSet::push` with `#[rustc_confusables("insert")]`. When the user
mistypes `btreeset.push()`, `BTreeSet::insert` will be suggested if
there are no other candidates to suggest.
This PR adds support for detecting if overflow checks are enabled in similar fashion as debug_assertions are detected.
Possible use-case of this, for example, if we want to use checked integer casts in builds with overflow checks, e.g.
```rust
pub fn cast(val: usize)->u16 {
if cfg!(overflow_checks) {
val.try_into().unwrap()
}
else{
vas as _
}
}
```
Resolves#91130.
Tracking issue: #111466.
Add cross-language LLVM CFI support to the Rust compiler
This PR adds cross-language LLVM Control Flow Integrity (CFI) support to the Rust compiler by adding the `-Zsanitizer-cfi-normalize-integers` option to be used with Clang `-fsanitize-cfi-icall-normalize-integers` for normalizing integer types (see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space). For more information about LLVM CFI and cross-language LLVM CFI support for the Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and -Zsanitizer-cfi-normalize-integers, and requires proper (i.e., non-rustc) LTO (i.e., -Clinker-plugin-lto).
Thank you again, ``@bjorn3,`` ``@nikic,`` ``@samitolvanen,`` and the Rust community for all the help!
This commit adds cross-language LLVM Control Flow Integrity (CFI)
support to the Rust compiler by adding the
`-Zsanitizer-cfi-normalize-integers` option to be used with Clang
`-fsanitize-cfi-icall-normalize-integers` for normalizing integer types
(see https://reviews.llvm.org/D139395).
It provides forward-edge control flow protection for C or C++ and Rust
-compiled code "mixed binaries" (i.e., for when C or C++ and Rust
-compiled code share the same virtual address space). For more
information about LLVM CFI and cross-language LLVM CFI support for the
Rust compiler, see design document in the tracking issue #89653.
Cross-language LLVM CFI can be enabled with -Zsanitizer=cfi and
-Zsanitizer-cfi-normalize-integers, and requires proper (i.e.,
non-rustc) LTO (i.e., -Clinker-plugin-lto).
Stabilize debugger_visualizer
This stabilizes the `debugger_visualizer` attribute (#95939).
* Marks the `debugger_visualizer` feature as `accepted`.
* Marks the `debugger_visualizer` attribute as `ungated`.
* Deletes feature gate test, removes feature gate from other tests.
Closes#95939
Convert all the crates that have had their diagnostic migration
completed (except save_analysis because that will be deleted soon and
apfloat because of the licensing problem).
This commit adds LLVM Kernel Control Flow Integrity (KCFI) support to
the Rust compiler. It initially provides forward-edge control flow
protection for operating systems kernels for Rust-compiled code only by
aggregating function pointers in groups identified by their return and
parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by identifying C char and integer type uses at the
time types are encoded (see Type metadata in the design document in the
tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Co-authored-by: bjorn3 <17426603+bjorn3@users.noreply.github.com>
Add `rustc_deny_explicit_impl`
Also adjust `E0322` error message to be more general, since it's used for `DiscriminantKind` and `Pointee` as well.
Also add `rustc_deny_explicit_impl` on the `Tuple` and `Destruct` marker traits.
The new implementation doesn't use weak lang items and instead changes
`#[alloc_error_handler]` to an attribute macro just like
`#[global_allocator]`.
The attribute will generate the `__rg_oom` function which is called by
the compiler-generated `__rust_alloc_error_handler`. If no `__rg_oom`
function is defined in any crate then the compiler shim will call
`__rdl_oom` in the alloc crate which will simply panic.
This also fixes link errors with `-C link-dead-code` with
`default_alloc_error_handler`: `__rg_oom` was previously defined in the
alloc crate and would attempt to reference the `oom` lang item, even if
it didn't exist. This worked as long as `__rg_oom` was excluded from
linking since it was not called.
This is a prerequisite for the stabilization of
`default_alloc_error_handler` (#102318).
Sort tests at compile time, not at startup
Recently, another Miri user was trying to run `cargo miri test` on the crate `iced-x86` with `--features=code_asm,mvex`. This configuration has a startup time of ~18 minutes. That's ~18 minutes before any tests even start to run. The fact that this crate has over 26,000 tests and Miri is slow makes a lot of code which is otherwise a bit sloppy but fine into a huge runtime issue.
Sorting the tests when the test harness is created instead of at startup time knocks just under 4 minutes out of those ~18 minutes. I have ways to remove most of the rest of the startup time, but this change requires coordinating changes of both the compiler and libtest, so I'm sending it separately.
(except for doctests, because there is no compile-time harness)
change AccessLevels representation
Part of RFC (https://github.com/rust-lang/rust/issues/48054). This patch implements effective visibility table with basic methods and change AccessLevels table representation according to it.
r? ``@petrochenkov``
ssa: implement `#[collapse_debuginfo]`
cc #39153rust-lang/compiler-team#386
Debuginfo line information for macro invocations are collapsed by default - line information are replaced by the line of the outermost expansion site. Using `-Zdebug-macros` disables this behaviour.
When the `collapse_debuginfo` feature is enabled, the default behaviour is reversed so that debuginfo is not collapsed by default. In addition, the `#[collapse_debuginfo]` attribute is available and can be applied to macro definitions which will then have their line information collapsed.
r? rust-lang/wg-debugging
Debuginfo line information for macro invocations are collapsed by
default - line information are replaced by the line of the outermost
expansion site. Using `-Zdebug-macros` disables this behaviour.
When the `collapse_debuginfo` feature is enabled, the default behaviour
is reversed so that debuginfo is not collapsed by default. In addition,
the `#[collapse_debuginfo]` attribute is available and can be applied to
macro definitions which will then have their line information collapsed.
Signed-off-by: David Wood <david.wood@huawei.com>
Support `#[unix_sigpipe = "inherit|sig_dfl"]` on `fn main()` to prevent ignoring `SIGPIPE`
When enabled, programs don't have to explicitly handle `ErrorKind::BrokenPipe` any longer. Currently, the program
```rust
fn main() { loop { println!("hello world"); } }
```
will print an error if used with a short-lived pipe, e.g.
% ./main | head -n 1
hello world
thread 'main' panicked at 'failed printing to stdout: Broken pipe (os error 32)', library/std/src/io/stdio.rs:1016:9
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
by enabling `#[unix_sigpipe = "sig_dfl"]` like this
```rust
#![feature(unix_sigpipe)]
#[unix_sigpipe = "sig_dfl"]
fn main() { loop { println!("hello world"); } }
```
there is no error, because `SIGPIPE` will not be ignored and thus the program will be killed appropriately:
% ./main | head -n 1
hello world
The current libstd behaviour of ignoring `SIGPIPE` before `fn main()` can be explicitly requested by using `#[unix_sigpipe = "sig_ign"]`.
With `#[unix_sigpipe = "inherit"]`, no change at all is made to `SIGPIPE`, which typically means the behaviour will be the same as `#[unix_sigpipe = "sig_dfl"]`.
See https://github.com/rust-lang/rust/issues/62569 and referenced issues for discussions regarding the `SIGPIPE` problem itself
See the [this](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Proposal.3A.20First.20step.20towards.20solving.20the.20SIGPIPE.20problem) Zulip topic for more discussions, including about this PR.
Tracking issue: https://github.com/rust-lang/rust/issues/97889