Silence some follow-up errors [3/x]
this is one piece of the requested cleanups from https://github.com/rust-lang/rust/pull/117449
Keep error types around, even in obligations.
These help silence follow-up errors, as we now figure out that some types (most notably inference variables) are equal to an error type.
But it also allows figuring out more types in the presence of errors, possibly causing more errors.
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
We have `span_delayed_bug` and often pass it a `DUMMY_SP`. This commit
adds `delayed_bug`, which matches pairs like `err`/`span_err` and
`warn`/`span_warn`.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
unify query canonicalization mode
Exclude from canonicalization only the static lifetimes that appear in the param env because of #118965 . Any other occurrence can be canonicalized safely AFAICT.
r? `@lcnr`
The existing uses are replaced in one of three ways.
- In a function that also has calls to `emit`, just rearrange the code
so that exactly one of `delay_as_bug` or `emit` is called on every
path.
- In a function returning a `DiagnosticBuilder`, use
`downgrade_to_delayed_bug`. That's good enough because it will get
emitted later anyway.
- In `unclosed_delim_err`, one set of errors is being replaced with
another set, so just cancel the original errors.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Use `resolutions(()).effective_visiblities` to avoid cycle errors in `report_object_error`
Inside of `report_object_error`, using the `effective_visibilities` query causes cycles since it calls `type_of`, which itself may call `typeck`, which may end up reporting its own object-safety errors.
Fixes#119346Fixes#119502
Tweak suggestions for bare trait used as a type
```
error[E0782]: trait objects must include the `dyn` keyword
--> $DIR/not-on-bare-trait-2021.rs:11:11
|
LL | fn bar(x: Foo) -> Foo {
| ^^^
|
help: use a generic type parameter, constrained by the trait `Foo`
|
LL | fn bar<T: Foo>(x: T) -> Foo {
| ++++++++ ~
help: you can also use `impl Foo`, but users won't be able to specify the type paramer when calling the `fn`, having to rely exclusively on type inference
|
LL | fn bar(x: impl Foo) -> Foo {
| ++++
help: alternatively, use a trait object to accept any type that implements `Foo`, accessing its methods at runtime using dynamic dispatch
|
LL | fn bar(x: &dyn Foo) -> Foo {
| ++++
error[E0782]: trait objects must include the `dyn` keyword
--> $DIR/not-on-bare-trait-2021.rs:11:19
|
LL | fn bar(x: Foo) -> Foo {
| ^^^
|
help: use `impl Foo` to return an opaque type, as long as you return a single underlying type
|
LL | fn bar(x: Foo) -> impl Foo {
| ++++
help: alternatively, you can return an owned trait object
|
LL | fn bar(x: Foo) -> Box<dyn Foo> {
| +++++++ +
```
Fix#119525:
```
error[E0038]: the trait `Ord` cannot be made into an object
--> $DIR/bare-trait-dont-suggest-dyn.rs:3:33
|
LL | fn ord_prefer_dot(s: String) -> Ord {
| ^^^ `Ord` cannot be made into an object
|
note: for a trait to be "object safe" it needs to allow building a vtable to allow the call to be resolvable dynamically; for more information visit <https://doc.rust-lang.org/reference/items/traits.html#object-safety>
--> $SRC_DIR/core/src/cmp.rs:LL:COL
|
= note: the trait cannot be made into an object because it uses `Self` as a type parameter
::: $SRC_DIR/core/src/cmp.rs:LL:COL
|
= note: the trait cannot be made into an object because it uses `Self` as a type parameter
help: consider using an opaque type instead
|
LL | fn ord_prefer_dot(s: String) -> impl Ord {
| ++++
```
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
Implement constant propagation on top of MIR SSA analysis
This implements the idea I proposed in https://github.com/rust-lang/rust/pull/110719#issuecomment-1718324700
Based on https://github.com/rust-lang/rust/pull/109597
The value numbering "GVN" pass formulates each rvalue that appears in MIR with an abstract form (the `Value` enum), and assigns an integer `VnIndex` to each. This abstract form can be used to deduplicate values, reusing an earlier local that holds the same value instead of recomputing. This part is proposed in #109597.
From this abstract representation, we can perform more involved simplifications, for example in https://github.com/rust-lang/rust/pull/111344.
With the abstract representation `Value`, we can also attempt to evaluate each to a constant using the interpreter. This builds a `VnIndex -> OpTy` map. From this map, we can opportunistically replace an operand or a rvalue with a constant if their value has an associated `OpTy`.
The most relevant commit is [Evaluated computed values to constants.](2767c4912e)"
r? `@oli-obk`
rework `-Zverbose`
implements the changes described in https://github.com/rust-lang/compiler-team/issues/706
the first commit is only a name change from `-Zverbose` to `-Zverbose-internals` and does not change behavior. the second commit changes diagnostics.
possible follow up work:
- `ty::pretty` could print more info with `--verbose` than it does currently. `-Z verbose-internals` shows too much info in a way that's not helpful to users. michael had ideas about this i didn't fully understand: https://rust-lang.zulipchat.com/#narrow/stream/233931-t-compiler.2Fmajor-changes/topic/uplift.20some.20-Zverbose.20calls.20and.20rename.20to.E2.80.A6.20compiler-team.23706/near/408984200
- `--verbose` should imply `-Z write-long-types-to-disk=no`. the code in `ty_string_with_limit` should take `--verbose` into account (apparently this affects `Ty::sort_string`, i'm not familiar with this code). writing a file to disk should suggest passing `--verbose`.
r? `@compiler-errors` cc `@estebank`
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
subtype_predicate: remove unnecessary probe
There is no reason to probe here. The failure either results in an actual type error, in which cases the probe is useless, or it is used inside of evaluate, in which case we're already inside of the `fn evaluation_probe`, so it is also not necessary.
Yeet unnecessary param envs
We don't need to pass in param-envs around in the lexical region resolution code (or in `MatchAgainstFreshVars` in the solver), since it is only used to eval some consts in `structurally_relate_tys` which I removed.
This is in preparation for normalizing the outlives clauses in `ParamEnv` for the new trait solver.
r? lcnr
This commit replaces this pattern:
```
err.into_diagnostic(dcx)
```
with this pattern:
```
dcx.create_err(err)
```
in a lot of places.
It's a little shorter, makes the error level explicit, avoids some
`IntoDiagnostic` imports, and is a necessary prerequisite for the next
commit which will add a `level` arg to `into_diagnostic`.
This requires adding `track_caller` on `create_err` to avoid mucking up
the output of `tests/ui/track-diagnostics/track4.rs`. It probably should
have been there already.
Collect lang items from AST, get rid of `GenericBound::LangItemTrait`
r? `@cjgillot`
cc #115178
Looking forward, the work to remove `QPath::LangItem` will also be significantly more difficult, but I plan on doing it as well. Specifically, we have to change:
1. A lot of `rustc_ast_lowering` for things like expr `..`
2. A lot of astconv, since we actually instantiate lang and non-lang paths quite differently.
3. A ton of diagnostics and clippy lints that are special-cased via `QPath::LangItem`
Meanwhile, it was pretty easy to remove `GenericBound::LangItemTrait`, so I just did that here.
cache param env canonicalization
Canonicalize ParamEnv only once and store it. Then whenever we try to canonicalize `ParamEnvAnd<'tcx, T>` we only have to canonicalize `T` and then merge the results.
Prelimiary results show ~3-4% savings in diesel and serde benchmarks.
Best to review commits individually. Some commits have a short description.
Initial implementation had a soundness bug (https://github.com/rust-lang/rust/pull/117749#issuecomment-1840453387) due to cache invalidation:
- When canonicalizing `Ty<'?0>` we first try to resolve region variables in the current InferCtxt which may have a constraint `?0 == 'static`. This means that we register `Ty<'?0> => Canonical<Ty<'static>>` in the cache, which is obviously incorrect in another inference context.
- This is fixed by not doing region resolution when canonicalizing the query *input* (vs. response), which is the only place where ParamEnv is used, and then in a later commit we *statically* guard against any form of inference variable resolution of the cached canonical ParamEnv's.
r? `@ghost`
This doesn't change behavior.
It should prevent unintentional resolution of inference variables
during canonicalization, which previously caused a soundness bug.
See PR description for more.
ParamEnv is canonicalized in *queries input* rather than query response.
In such case we don't "preserve universes" of canonical variable.
This means that `universe_map` always has the default value, which is
wasteful to store in the cache.
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`
remove redundant imports
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and removing redundant imports code into two PR.
r? `@petrochenkov`
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
recurse into refs when comparing tys for diagnostics
before:
![image](https://github.com/rust-lang/rust/assets/23638587/bf6abd62-c7f3-4c09-a47e-31b6e129de19)
after:
![image](https://github.com/rust-lang/rust/assets/23638587/b704d728-ddba-4204-aebe-c07dcbbcb55c)
this diff from the test suite is also quite nice imo:
```diff
`@@` -4,8 +4,8 `@@` error[E0308]: mismatched types
LL | debug_assert_eq!(iter.next(), Some(value));
| ^^^^^^^^^^^ expected `Option<<I as Iterator>::Item>`, found `Option<&<I as Iterator>::Item>`
|
- = note: expected enum `Option<<I as Iterator>::Item>`
- found enum `Option<&<I as Iterator>::Item>`
+ = note: expected enum `Option<_>`
+ found enum `Option<&_>`
```
Unify `TraitRefs` and `PolyTraitRefs` in `ValuePairs`
I did this recently with `FnSigs` and `PolyFnSigs` but didn't think to do it with `TraitRefs` and `PolyTraitRefs`.
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Remove `HirId` from `QPath::LangItem`
Remove `HirId` from `QPath::LangItem`, since there was only *one* use-case (`ObligationCauseCode::AwaitableExpr`), which we can instead recover by walking the HIR tree.
Move EagerResolution to rustc_infer::infer::resolve
`EagerResolver` fits better in `rustc_infer::infer::resolver`.
Started to disentagle #118118 that has a lot of unrelated things.
r? `@compiler-errors` `@lcnr`
Cache flags for `ty::Const`
Not sure if this has been attempted yet, but worth a shot. It does make the code simpler in `rustc_type_ir`, since we can assume that consts have a `flags` method that is no-cost.
r? `@ghost`
Remove `PredicateKind::ClosureKind`
We don't need the `ClosureKind` predicate kind -- instead, `Fn`-family trait goals are left as ambiguous, and we only need to make progress on `FnOnce` projection goals for inference purposes.
This is similar to how we do confirmation of `Fn`-family trait and projection goals in the new trait solver, which also doesn't use the `ClosureKind` predicate.
Some hacky logic is added in the second commit so that we can keep the error messages the same.
By default, `newtype_index!` types get a default `Encodable`/`Decodable`
impl. You can opt out of this with `custom_encodable`. Opting out is the
opposite to how Rust normally works with autogenerated (derived) impls.
This commit inverts the behaviour, replacing `custom_encodable` with
`encodable` which opts into the default `Encodable`/`Decodable` impl.
Only 23 of the 59 `newtype_index!` occurrences need `encodable`.
Even better, there were eight crates with a dependency on
`rustc_serialize` just from unused default `Encodable`/`Decodable`
impls. This commit removes that dependency from those eight crates.
Remove `-Zperf-stats`.
The included measurements have varied over the years. At one point there were quite a few more, but #49558 deleted a lot that were no longer used. Today there's just four, and it's a motley collection that doesn't seem particularly valuable.
I think it has been well and truly subsumed by self-profiling, which collects way more data.
r? `@wesleywiser`
The included measurements have varied over the years. At one point there
were quite a few more, but #49558 deleted a lot that were no longer
used. Today there's just four, and it's a motley collection that doesn't
seem particularly valuable.
I think it has been well and truly subsumed by self-profiling, which
collects way more data.
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.
On object safety error, mention new enum as alternative
When we encounter a `dyn Trait` that isn't object safe, look for its implementors. If there's one, mention using it directly If there are less than 9, mention the possibility of creating a new enum and using that instead.
Fix#80194.
When we encounter a `dyn Trait` that isn't object safe, look for its
implementors. If there's one, mention using it directly If there are
less than 9, mention the possibility of creating a new enum and using
that instead.
Account for object unsafe `impl Trait on dyn Trait {}`. Make a
distinction between public and sealed traits.
Fix#80194.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
Consider alias bounds when computing liveness in NLL (but this time sound hopefully)
This is a revival of #116040, except removing the changes to opaque lifetime captures check to make sure that we're not triggering any unsoundness due to the lack of general existential regions and the currently-existing `ReErased` hack we use instead.
r? `@aliemjay` -- I appreciate you pointing out the unsoundenss in the previous iteration of this PR, and I'd like to hear that you're happy with this iteration of this PR before this goes back into FCP :>
Fixes#116794 as well
---
(mostly copied from #116040 and reworked slightly)
# Background
Right now, liveness analysis in NLL is a bit simplistic. It simply walks through all of the regions of a type and marks them as being live at points. This is problematic in the case of aliases, since it requires that we mark **all** of the regions in their args[^1] as live, leading to bugs like #42940.
In reality, we may be able to deduce that fewer regions are allowed to be present in the projected type (or "hidden type" for opaques) via item bounds or where clauses, and therefore ideally, we should be able to soundly require fewer regions to be live in the alias.
For example:
```rust
trait Captures<'a> {}
impl<T> Captures<'_> for T {}
fn capture<'o>(_: &'o mut ()) -> impl Sized + Captures<'o> + 'static {}
fn test_two_mut(mut x: ()) {
let _f1 = capture(&mut x);
let _f2 = capture(&mut x);
//~^ ERROR cannot borrow `x` as mutable more than once at a time
}
```
In the example above, we should be able to deduce from the `'static` bound on `capture`'s opaque that even though `'o` is a captured region, it *can never* show up in the opaque's hidden type, and can soundly be ignored for liveness purposes.
# The Fix
We apply a simple version of RFC 1214's `OutlivesProjectionEnv` and `OutlivesProjectionTraitDef` rules to NLL's `make_all_regions_live` computation.
Specifically, when we encounter an alias type, we:
1. Look for a unique outlives bound in the param-env or item bounds for that alias. If there is more than one unique region, bail, unless any of the outlives bound's regions is `'static`, and in that case, prefer `'static`. If we find such a unique region, we can mark that outlives region as live and skip walking through the args of the opaque.
2. Otherwise, walk through the alias's args recursively, as we do today.
## Limitation: Multiple choices
This approach has some limitations. Firstly, since liveness doesn't use the same type-test logic as outlives bounds do, we can't really try several options when we're faced with a choice.
If we encounter two unique outlives regions in the param-env or bounds, we simply fall back to walking the opaque via its args. I expect this to be mostly mitigated by the special treatment of `'static`, and can be fixed in a forwards-compatible by a more sophisticated analysis in the future.
## Limitation: Opaque hidden types
Secondly, we do not employ any of these rules when considering whether the regions captured by a hidden type are valid. That causes this code (cc #42940) to fail:
```rust
trait Captures<'a> {}
impl<T> Captures<'_> for T {}
fn a() -> impl Sized + 'static {
b(&vec![])
}
fn b<'o>(_: &'o Vec<i32>) -> impl Sized + Captures<'o> + 'static {}
```
We need to have existential regions to avoid [unsoundness](https://github.com/rust-lang/rust/pull/116040#issuecomment-1751628189) when an opaque captures a region which is not represented in its own substs but which outlives a region that does.
## Read more
Context: https://github.com/rust-lang/rust/pull/115822#issuecomment-1731153952 (for the liveness case)
More context: https://github.com/rust-lang/rust/issues/42940#issuecomment-455198309 (for the opaque capture case, which this does not fix)
[^1]: except for bivariant region args in opaques, which will become less relevant when we move onto edition 2024 capture semantics for opaques.
When encountering an associated item with a type param that could be
constrained, do not look at the parent item if the type param comes from
the associated item.
Fix#117209.
`OptWithInfcx` naming nits, trait bound simplifications
* Use an associated type `Interner` on `InferCtxtLike` to remove a redundant interner parameter (`I: Interner, Infcx: InferCtxtLike<I>` -> `Infcx: InferCtxtLike`).
* Remove double-`Option` between `infcx: Option<Infcx>` and `fn universe_of_ty(&self, ty: ty::InferTy) -> Option<ty::UniverseIndex>`. We don't need the infcx to be optional if we can provide a "noop" (`NoInfcx`) implementation that just always returns `None` for universe index.
* Also removes the `core::convert::Infallible` implementation which I found a bit weird...
* Some naming nits with params.
* I found `InferCtxt` + `InfCtx` and `Infcx` to be a lot of different ways to spell "inference context", so I got rid of the `InfCtx` type parameter name in favor of `Infcx` which is a more standard name.
* I found `OptWithInfcx` to be a bit redundant -> `WithInfcx`.
I'm making these changes because I intend to reuse the `InferCtxtLike` trait for uplifting the canonicalizer into a new trait -- conveniently, the information I need for uplifting the canonicalizer also is just the universe information of a type var, so it's super convenient 😸
r? `@BoxyUwU` or `@lcnr`
Rollup of 6 pull requests
Successful merges:
- #107159 (rand use getrandom for freebsd (available since 12.x))
- #116859 (Make `ty::print::Printer` take `&mut self` instead of `self`)
- #117046 (return unfixed len if pat has reported error)
- #117070 (rustdoc: wrap Type with Box instead of Generics)
- #117074 (Remove smir from triage and add me to stablemir)
- #117086 (Update .mailmap to promote my livename)
r? `@ghost`
`@rustbot` modify labels: rollup
Make `ty::print::Printer` take `&mut self` instead of `self`
based on #116815
This simplifies the code by removing all the `self` assignments and
makes the flow of data clearer - always into the printer.
Especially in v0 mangling, which already used `&mut self` in some
places, it gets a lot more uniform.
This simplifies the code by removing all the `self` assignments and
makes the flow of data clearer - always into the printer.
Especially in v0 mangling, which already used `&mut self` in some
places, it gets a lot more uniform.
These are `Self` in almost all printers except one, which can just store
the state as a field instead. This simplifies the printer and allows for
further simplifications, for example using `&mut self` instead of
passing around the printer.
Relate alias ty with variance
In the new solver, turns out that the subst-relate branch of the alias-relate predicate was relating args invariantly even for opaques, which have variance 💀.
This change is a bit more invasive, but I'd rather not special-case it [here](aeaa5c30e5/compiler/rustc_trait_selection/src/solve/alias_relate.rs (L171-L190)) and then have it break elsewhere. I'm doing a perf run to see if the extra call to `def_kind` is that expensive, if it is, I'll reconsider.
r? ``@lcnr``
Show more information when multiple `impl`s apply
- When there are `impl`s without type params, show only those (to avoid showing overly generic `impl`s).
```
error[E0283]: type annotations needed
--> $DIR/multiple-impl-apply.rs:34:9
|
LL | let y = x.into();
| ^ ---- type must be known at this point
|
note: multiple `impl`s satisfying `_: From<Baz>` found
--> $DIR/multiple-impl-apply.rs:14:1
|
LL | impl From<Baz> for Bar {
| ^^^^^^^^^^^^^^^^^^^^^^
...
LL | impl From<Baz> for Foo {
| ^^^^^^^^^^^^^^^^^^^^^^
= note: required for `Baz` to implement `Into<_>`
help: consider giving `y` an explicit type
|
LL | let y: /* Type */ = x.into();
| ++++++++++++
```
- Lower the importance of `T: Sized`, `T: WellFormed` and coercion errors, to prioritize more relevant errors. The pre-existing deduplication logic deals with hiding redundant errors better that way, and we show errors with more metadata that is useful to the user.
- Show `<SelfTy as Trait>::assoc_fn` suggestion in more cases.
```
error[E0790]: cannot call associated function on trait without specifying the corresponding `impl` type
--> $DIR/cross-return-site-inference.rs:38:16
|
LL | return Err(From::from("foo"));
| ^^^^^^^^^^ cannot call associated function of trait
|
help: use a fully-qualified path to a specific available implementation
|
LL | return Err(</* self type */ as From>::from("foo"));
| +++++++++++++++++++ +
```
Fix#88284.
adjust how closure/generator types are printed
I saw `&[closure@$DIR/issue-20862.rs:2:5]` and I thought it is a slice type, because that's usually what `&[_]` is... it took me a while to realize that this is just a confusing printer and actually there's no slice. Let's use something that cannot be mistaken for a regular type.
This function is now used to check `#[panic_handler]`, `start` lang item, `main`, `#[start]` and intrinsic functions.
The diagnosis produced are now closer to the ones produced by trait/impl method signature mismatch.
move required_consts check to general post-mono-check function
This factors some code that is common between the interpreter and the codegen backends into shared helper functions. Also as a side-effect the interpreter now uses the same `eval` functions as everyone else to get the evaluated MIR constants.
Also this is in preparation for another post-mono check that will be needed for (the current hackfix for) https://github.com/rust-lang/rust/issues/115709: ensuring that all locals are dynamically sized.
I didn't expect this to change diagnostics, but it's just cycle errors that change.
r? `@oli-obk`
It's easier to pass it in to the one method that needs it
(`highlighting_region_vid`) than to store it in the type. This means
`RegionHighlightMode` can impl `Default`.
This fixes the changes brought to codegen tests when effect params are
added to libcore, by not attempting to monomorphize functions that get
the host param by being `const fn`.
Bubble up opaque <eq> opaque operations instead of picking an order
In case we are in `Bubble` mode (meaning every opaque type that is defined in the current crate is treated as if it were in its defining scope), we don't try to register an opaque type as the hidden type of another opaque type, but instead bubble up an obligation to equate them at the query caller site. Usually that means we have a `DefiningAnchor::Bind` and thus can reliably figure out whether an opaque type is in its defining scope. Where we can't, we'll error out, so the default is sound.
With this change we start using `AliasTyEq` predicates in the old solver, too.
fixes https://github.com/rust-lang/rust/issues/108498
But also regresses `tests/ui/impl-trait/anon_scope_creep.rs`. Our use of `Bubble` for `check_opaque_type_well_formed` is going to keep biting us.
r? `@lcnr` `@compiler-errors`
Speed up compilation of `type-system-chess`
[`type-system-chess`](https://github.com/rust-lang/rustc-perf/pull/1680) is an unusual program that implements a compile-time chess position solver in the trait system(!) This PR is about making it compile faster.
r? `@ghost`
Point at return type when it influences non-first `match` arm
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type `!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.
Point out expectation even if we have `TypeError::RegionsInsufficientlyPolymorphic`
just a minor tweak, since saying "one type is more general than the other" kinda sucks if we don't actually point out two types.
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type
`!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.
Store the laziness of type aliases in their `DefKind`
Previously, we would treat paths referring to type aliases as *lazy* type aliases if the current crate had lazy type aliases enabled independently of whether the crate which the alias was defined in had the feature enabled or not.
With this PR, the laziness of a type alias depends on the crate it is defined in. This generally makes more sense to me especially if / once lazy type aliases become the default in a new edition and we need to think about *edition interoperability*:
Consider the hypothetical case where the dependency crate has an older edition (and thus eager type aliases), it exports a type alias with bounds & a where-clause (which are void but technically valid), the dependent crate has the latest edition (and thus lazy type aliases) and it uses that type alias. Arguably, the bounds should *not* be checked since at any time, the dependency crate should be allowed to change the bounds at will with a *non*-major version bump & without negatively affecting downstream crates.
As for the reverse case (dependency: lazy type aliases, dependent: eager type aliases), I guess it rules out anything from slight confusion to mild annoyance from upstream crate authors that would be caused by the compiler ignoring the bounds of their type aliases in downstream crates with older editions.
---
This fixes#114468 since before, my assumption that the type alias associated with a given weak projection was lazy (and therefore had its variances computed) did not necessarily hold in cross-crate scenarios (which [I kinda had a hunch about](https://github.com/rust-lang/rust/pull/114253#discussion_r1278608099)) as outlined above. Now it does hold.
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
Rework upcasting confirmation to support upcasting to fewer projections in target bounds
This PR implements a modified trait upcasting algorithm that is resilient to changes in the number of associated types in the bounds of the source and target trait objects.
It does this by equating each bound of the target trait ref individually against the bounds of the source trait ref, rather than doing them all together by constructing a new trait object.
#### The new way we do trait upcasting confirmation
1. Equate the target trait object's principal trait ref with one of the supertraits of the source trait object's principal.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2509-L2525)
2. Make sure that every auto trait in the *target* trait object is present in the source trait ref's bounds.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2559-L2562)
3. For each projection in the *target* trait object, make sure there is exactly one projection that equates with it in the source trait ref's bound. If there is more than one, bail with ambiguity.
fdcab310b2/compiler/rustc_trait_selection/src/traits/select/mod.rs (L2526-L2557)
* Since there may be more than one that applies, we probe first to check that there is exactly one, then we equate it outside of a probe once we know that it's unique.
4. Make sure the lifetime of the source trait object outlives the lifetime of the target.
<details>
<summary>Meanwhile, this is how we used to do upcasting:</summary>
1. For each supertrait of the source trait object, take that supertrait, append the source object's projection bounds, and the *target* trait object's auto trait bounds, and make this into a new object type:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L915-L929)
2. Then equate it with the target trait object:
d12c6e947c/compiler/rustc_trait_selection/src/traits/select/confirmation.rs (L936)
This will be a type mismatch if the target trait object has fewer projection bounds, since we compare the bounds structurally in relate:
d12c6e947c/compiler/rustc_middle/src/ty/relate.rs (L696-L698)
</details>
Fixes#114035
Also fixes#114113, because I added a normalize call in the old solver.
r? types
resolve before canonicalization in new solver, ICE if unresolved
Fold the values with a resolver before canonicalization instead of making it happen within canonicalization.
This allows us to filter trivial region constraints from the external constraints.
r? ``@lcnr``
Don't check unnecessarily that impl trait is RPIT
We have this random `return_type_impl_trait` function to detect if a function returns an RPIT which is used in outlives suggestions, but removing it doesn't actually change any diagnostics. Let's just remove it.
Also, suppress a spurious outlives error from a ReError.
Fixes#114274
Map RPITIT's opaque type bounds back from projections to opaques
An RPITIT in a program's AST is eventually translated into both a projection GAT and an opaque. The opaque is used for default trait methods, like:
```
trait Foo {
fn bar() -> impl Sized { 0i32 }
}
```
The item bounds for both the projection and opaque are identical, and both have a *projection* self ty. This is mostly okay, since we can normalize this projection within the default trait method body to the opaque, but it does two things:
1. it leads to bugs in places where we don't normalize item bounds, like `deduce_future_output_from_obligations`
2. it leads to extra match arms that are both suspicious looking and also easy to miss
This PR maps the opaque type bounds of the RPITIT's *opaque* back to the opaque's self type to avoid this quirk. Then we can fix the UI test for #108304 (1.) and also remove a bunch of match arms (2.).
Fixes#108304
r? `@spastorino`
Rollup of 7 pull requests
Successful merges:
- #114099 (privacy: no nominal visibility for assoc fns )
- #114128 (When flushing delayed span bugs, write to the ICE dump file even if it doesn't exist)
- #114138 (Adjust spans correctly for fn -> method suggestion)
- #114146 (Skip reporting item name when checking RPITIT GAT's associated type bounds hold)
- #114147 (Insert RPITITs that were shadowed by missing ADTs that resolve to [type error])
- #114155 (Replace a lazy `RefCell<Option<T>>` with `OnceCell<T>`)
- #114164 (Add regression test for `--cap-lints allow` and trait bounds warning)
r? `@ghost`
`@rustbot` modify labels: rollup
Skip reporting item name when checking RPITIT GAT's associated type bounds hold
Doesn't really make sense to label an item that has a name that users can't really mention. Fixes#114145. Also fixes#113794.
r? `@spastorino`
Introduce `trait DebugWithInfcx` to debug format types with universe info
Seeing universes of infer vars is valuable for debugging but currently we have no way of easily debug formatting a type with the universes of all the infer vars shown. In the future I hope to augment the new solver's proof tree output with a `DebugWithInfcx` impl so that it can show universes but I left that out of this PR as it would be non trivial and this is already large and complex enough.
The goal here is to make the various abstractions taking `T: Debug` able to use the codepath for printing out universes, that way we can do `debug!("{:?}", my_x)` and have `my_x` have universes shown, same for the `write!` macro. It's not possible to put the `Infcx: InferCtxtLike<I>` into the formatter argument to `Debug::fmt` so it has to go into the self ty. For this we introduce the type `OptWithInfcx<I: Interner, Infcx: InferCtxtLike<I>, T>` which has the data `T` optionally coupled with the infcx (more on why it's optional later).
Because of coherence/orphan rules it's not possible to write the impl `Debug for OptWithInfcx<..., MyType>` when `OptWithInfcx` is in a upstream crate. This necessitates a blanket impl in the crate defining `OptWithInfcx` like so: `impl<T: DebugWithInfcx> Debug for OptWithInfcx<..., T>`. It is not intended for people to manually call `DebugWithInfcx::fmt`, the `Debug` impl for `OptWithInfcx` should be preferred.
The infcx has to be optional in `OptWithInfcx` as otherwise we would end up with a large amount of code duplication. Almost all types that want to be used with `OptWithInfcx` do not themselves need access to the infcx so if we were to not optional we would end up with large `Debug` and `DebugWithInfcx` impls that were practically identical other than that when formatting their fields we wrap the field in `OptWithInfcx` instead of formatting it alone.
The only types that need access to the infcx themselves are ty/const/region infer vars, everything else is implemented by having the `Debug` impl defer to `OptWithInfcx` with no infcx available. The `DebugWithInfcx` impl is pretty much just the standard `Debug` impl except that instead of recursively formatting fields with `write!(f, "{x:?}")` we must do `write!(f, "{:?}", opt_infcx.wrap(x))`. This is some pretty rough boilerplate but I could not think of an alternative unfortunately.
`OptWithInfcx::wrap` is an eager `Option::map` because 99% of callsites were discarding the existing data in `OptWithInfcx` and did not need lazy evaluation.
A trait `InferCtxtLike` was added instead of using `InferCtxt<'tcx>` as we need to implement `DebugWithInfcx` for types living in `rustc_type_ir` which are generic over an interner and do not have access to `InferCtxt` since it lives in `rustc_infer`. Additionally I suspect that adding universe info to new solver proof tree output will require an implementation of `InferCtxtLike` for something that is not an `InferCtxt` although this is not the primary motivaton.
---
To summarize:
- There is a type `OptWithInfcx` which bundles some data optionally with an infcx with allows us to pass an infcx into a `Debug` impl. It's optional instead of being there unconditionally so that we can share code for `Debug` and `DebugWithInfcx` impls that don't care about whether there is an infcx available but have fields that might care.
- There is a trait `DebugWithInfcx` which allows downstream crates to add impls of the form `Debug for OptWithInfcx<...>` which would normally be forbidden by orphan rules/coherence.
- There is a trait `InferCtxtLike` to allow us to implement `DebugWithInfcx` for types that live in `rustc_type_ir`
This allows debug formatting various `ty::*` structures with universes shown by using the `Debug` impl for `OptWithInfcx::new(ty, infcx)`
---
This PR does not add `DebugWithInfcx` impls to absolutely _everything_ that should realistically have them, for example you cannot use `OptWithInfcx<Obligation<Predicate>>`. I am leaving this to a future PR to do so as it would likely be a lot more work to do.
Rollup of 8 pull requests
Successful merges:
- #113413 (Add needs-triage to all new issues)
- #113426 (Don't ICE in `resolve_bound_vars` when associated return-type bounds are in bad positions)
- #113427 (Remove `variances_of` on RPITIT GATs, remove its one use-case)
- #113441 (miri: check that assignments do not self-overlap)
- #113453 (Remove unused from_method from rustc_on_unimplemented)
- #113456 (Avoid calling report_forbidden_specialization for RPITITs)
- #113466 (Update cargo)
- #113467 (Fix comment of `fn_can_unwind`)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove `variances_of` on RPITIT GATs, remove its one use-case
It doesn't make sense to implement variances on a GAT anyways, since we don't relate GATs with variance:
85bf07972a/compiler/rustc_middle/src/ty/relate.rs (L569-L579)
r? ``@spastorino``
Split `SelectionContext::select` into fns that take a binder and don't
*most* usages of `SelectionContext::select` don't need to use a binder, but wrap them in a dummy because of the signature. Let's split this out into `SelectionContext::{select,poly_select}` and limit the usages of the latter.
Right now, we only have 3 places where we're calling `poly_select` -- fulfillment, internally within the old solver, and the auto-trait finder.
r? `@lcnr`
`TypeParameterDefinition` always require a `DefId`
the `None` case never actually reaches diagnostics so it feels better for diagnostics to be able to rely on the `DefId` being there, cc #113310
Remove chalk support from the compiler
Removes chalk (`-Ztrait-solver=chalk`) from the compiler and prunes any dead code resulting from this, mainly:
* Remove the chalk compatibility layer in `compiler/rustc_traits/src/chalk`
* Remove the chalk flag `-Ztrait-solver=chalk` and its `TraitEngine` implementation
* Remove `TypeWellFormedFromEnv` (and its many `bug!()` match arms)
* Remove the chalk migration mode from compiletest
* Remove the `chalkify` UI tests (do we want to keep any of these, but migrate them to `-Ztrait-solver=next`??)
Fulfills rust-lang/types-team#93.
r? `@jackh726`
Make RPITITs assume/require their parent method's predicates
Removes a FIXME from the `param_env` query where we were manually adding the parent function's predicates to the RPITIT's assumptions.
r? `@spastorino`
[-Ztrait-solver=next, mir-typeck] instantiate hidden types in the root universe
Fixes an ICE in the test `member-constraints-in-root-universe`.
Main motivation is to make #112691 pass under the new solver.
r? ``@compiler-errors``
Various impl trait in assoc tys cleanups
r? `@compiler-errors`
All commits except for the last are pure refactorings. 274dab5bd658c97886a8987340bf50ae57900c39 allows struct fields to participate in deciding whether a function has an opaque in its signature.
best reviewed commit by commit
Add a fully fledged `Clause` type, rename old `Clause` to `ClauseKind`
Does two basic things before I put up a more delicate set of PRs (along the lines of #112714, but hopefully much cleaner) that migrate existing usages of `ty::Predicate` to `ty::Clause` (`predicates_of`/`item_bounds`/`ParamEnv::caller_bounds`).
1. Rename `Clause` to `ClauseKind`, so it's parallel with `PredicateKind`.
2. Add a new `Clause` type which is parallel to `Predicate`.
* This type exposes `Clause::kind(self) -> Binder<'tcx, ClauseKind<'tcx>>` which is parallel to `Predicate::kind` 😸
The new `Clause` type essentially acts as a newtype wrapper around `Predicate` that asserts that it is specifically a `PredicateKind::Clause`. Turns out from experimentation[^1] that this is not negative performance-wise, which is wonderful, since this a much simpler design than something that requires encoding the discriminant into the alignment bits of a predicate kind, or something else like that...
r? ``@lcnr`` or ``@oli-obk``
[^1]: https://github.com/rust-lang/rust/pull/112714#issuecomment-1595653910
Don't consider TAIT normalizable to hidden ty if it would result in impossible item bounds
See test for example where we shouldn't consider it possible to alias-relate a TAIT and hidden type.
r? `@lcnr`