Some small nits to the borrowck suggestions for mutating a map through index
1. Suggesting users to either use `.insert` or `.get_mut` (which do totally different things) can be a bit of a footgun, so let's make that a bit more nuanced.
2. I find the suggestion of `.get_mut(|val| { *val = whatever; })` to be a bit awkward. I changed this to be an if-let instead.
3. Fix a bug which was suppressing the structured suggestion for some mutations via the index operator on `HashMap`/`BTreeMap`.
r? estebank or reassign
borrowck diagnostics: make `add_move_error_suggestions` use the HIR rather than `SourceMap`
This PR aims to fix#132806 by rewriting `add_move_error_suggestions`[^1]. Previously, it manually scanned the source text to find a leading `&`, which isn't always going to produce a correct result (see: that issue). Admittedly, the HIR visitor in this PR introduces a lot of boilerplate, but hopefully the logic at its core isn't too complicated (I go over it in the comments). I also tried a simpler version that didn't use a HIR visitor and suggested adding `ref` always, but the `&ref x` suggestions really didn't look good. As a bonus for the added complexity though, it's now able to produce nice `&`-removing suggestions in more cases.
I tried to do this such that it avoids edition-dependent checks and its suggestions can be applied together with those from the match ergonomics 2024 migration lint. I haven't added tests for that since the details of match ergonomics 2024 are still being sorted out, but I can try if desired once that's finalized.
[^1]: In brief, it fires on patterns where users try to bind by-value in such a way that moves out of a reference to a non-Copy type (including slice references with non-copy elements). The suggestions are to change the binding's mode to be by-reference, either by removing[^2] an enclosing `&`/`&mut` or adding `ref` to the binding.
[^2]: Incidentally, I find the terminology of "consider removing the borrow" a bit confusing for a suggestion to remove a `&` pattern in order to make bindings borrow rather than move. I'm not sure what a good, concise way to explain that would be though, and that should go in a separate PR anyway.
- add a FIXME when looking for the region variance of unexpected regions
- drive-by: fix a doc comment link
- drive-by: simplify the variance match using exported variants instead
This context struct will hold data to help creating localized
constraints:
- the live regions, with the shape matching a CFG walk, indexed per
point
- the variance of these live regions, represented as the direction we'll
add the appropriate
We also add this structure to the mir typeck to record liveness data,
and make it responsible for localized constraint creation.
Avoid ICE in borrowck
Provide a fallback in `best_blame_constraint` when `find_constraint_paths_between_regions` doesn't have a result. This code is due a rework to avoid the letf-over `unwrap()`, but avoids the ICE caused by the repro.
Fix#133252.
Begin to implement type system layer of unsafe binders
Mostly TODOs, but there's a lot of match arms that are basically just noops so I wanted to split these out before I put up the MIR lowering/projection part of this logic.
r? oli-obk
Tracking:
- https://github.com/rust-lang/rust/issues/130516
cleanup `TypeVerifier`
We should merge it with the `TypeChecker` as we no longer bail in cases where it encounters an error since #111863.
It's quite inconsistent whether a check lives in the verifier or the `TypeChecker`, so this feels like a quite impactful cleanup. I expect that for this we may want to change the `TypeChecker` to also be a MIR visitor 🤔 this is non-trivial so I didn't fully do it in this PR.
Best reviewed commit by commit.
r? `@compiler-errors` feel free to reassign however
Foundations of location-sensitive polonius
I'd like to land the prototype I'm describing in the [polonius project goal](https://github.com/rust-lang/rust-project-goals/issues/118). It still is incomplete and naive and terrible but it's working "well enough" to consider landing.
I'd also like to make review easier by not opening a huge PR, but have a couple small-ish ones (the +/- line change summary of this PR looks big, but >80% is moving datalog to a single place).
This PR starts laying the foundation for that work:
- it refactors and collects 99% of the old datalog fact gen, which was spread around everywhere, into a single dedicated module. It's still present at 3 small places (one of which we should revert anyways) that are kinda deep within localized components and are not as easily extractable into the rest of fact gen, so it's fine for now.
- starts introducing the localized constraints, the building blocks of the naive way of implementing the location-sensitive analysis in-tree, which is roughly sketched out in https://smallcultfollowing.com/babysteps/blog/2023/09/22/polonius-part-1/ and https://smallcultfollowing.com/babysteps/blog/2023/09/29/polonius-part-2/ but with a different vibe than per-point environments described in these posts, just `r1@p: r2@q` constraints.
- sets up the skeleton of generating these localized constraints: converting NLL typeck constraints, and creating liveness constraints
- introduces the polonius dual to NLL MIR to help development and debugging. It doesn't do much currently but is a way to see these localized constraints: it's an NLL MIR dump + a dumb listing of the constraints, that can be dumped with `-Zdump-mir=polonius -Zpolonius=next`. Its current state is not intended to be a long-term thing, just for testing purposes -- I will replace its contents in the future with a different approach (an HTML+js file where we can more easily explore/filter/trace these constraints and loan reachability, have mermaid graphs of the usual graphviz dumps, etc).
I've started documenting the approach in this PR, I'll add more in the future. It's quite simple, and should be very clear when more constraints are introduced anyways.
r? `@matthewjasper`
Best reviewed per commit so that the datalog move is less bothersome to read, but if you'd prefer we separate that into a different PR, I can do that (and michael has offered to review these more mechanical changes if it'd help).
Provide a fallback in `best_blame_constraint` when `find_constraint_paths_between_regions` doesn't have a result. This code is due a rework to avoid the letf-over `unwrap()`, but avoids the ICE caused by the repro.
Fix#133252.
handle member constraints directly in the mir type checker
cleaner, faster, easier to change going forward :> fixes#109654
r? `@oli-obk` `@compiler-errors`
cleanup region handling: add `LateParamRegionKind`
The second commit is to enable a split between `BoundRegionKind` and `LateParamRegionKind`, by avoiding `BoundRegionKind` where it isn't necessary.
The third comment then adds `LateParamRegionKind` to avoid having the same late-param region for separate bound regions. This fixes#124021.
r? `@compiler-errors`
Re-export more `rustc_span::symbol` things from `rustc_span`.
`rustc_span::symbol` defines some things that are re-exported from `rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some closely related things such as `Ident` and `kw`. So you can do `use rustc_span::{Symbol, sym}` but you have to do `use rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`, and changes many `rustc_span::symbol::` qualifiers to `rustc_span::`. This is a 300+ net line of code reduction, mostly because many files with two `use rustc_span` items can be reduced to one.
r? `@jieyouxu`
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
An octuple of polonius fact generation cleanups
This PR is extracted from https://github.com/rust-lang/rust/pull/134268 for easier review and contains its first 8 commits. They have already been reviewed by ````@jackh726```` over there.
r? ````@jackh726````
rustc_borrowck: Suggest changing `&raw const` to `&raw mut` if applicable
Closes#127562
For reference, here is the diff compared to the original error reported in that issue before #134244 stopped suggesting the invalid syntax:
```
diff --git a/tests/ui/borrowck/no-invalid-mut-suggestion-for-raw-pointer-issue-127562.stderr b/tests/ui/borrowck/no-invalid-mut-suggestion-for-raw-pointer-issue-127562.stderr
index 0da5d15cf7f..dbe834b6b78 100644
--- a/tests/ui/borrowck/no-invalid-mut-suggestion-for-raw-pointer-issue-127562.stderr
+++ b/tests/ui/borrowck/no-invalid-mut-suggestion-for-raw-pointer-issue-127562.stderr
``@@`` -6,8 +6,8 ``@@`` LL | unsafe { *ptr = 3; }
|
help: consider changing this to be a mutable pointer
|
-LL | let ptr = &mut raw const val;
- | +++
+LL | let ptr = &raw mut val;
+ | ~~~
error: aborting due to 1 previous error
```
Since the previos commit renamed `assignment_rhs_span` to just
`rhs_span` there is no need for a variable just to shorten the
expression on the next line. Inline the variable.
Current `SwitchInt` handling has complicated control flow.
- The dataflow engine calls `Analysis::apply_switch_int_edge_effects`,
passing in an "applier" that impls `SwitchIntEdgeEffects`.
- `apply_switch_int_edge_effects` possibly calls `apply` on the applier,
passing it a closure.
- The `apply` method calls the closure on each `SwitchInt` edge.
- The closure operates on the edge.
I.e. control flow goes from the engine, to the analysis, to the applier
(which came from the engine), to the closure (which came from the
analysis). It took me a while to work this out.
This commit changes to a simpler structure that maintains the important
characteristics.
- The dataflow engine calls `Analysis::get_switch_int_data`.
- `get_switch_int_data` returns an `Option<Self::SwitchIntData>` value.
- If that returned value was `Some`, the dataflow engine calls
`Analysis::apply_switch_int_edge_effect` on each edge, passing the
`Self::SwitchIntData` value.
- `Analysis::apply_switch_int_edge_effect` operates on the edge.
I.e. control flow goes from the engine, to the analysis, to the
engine, to the analysis.
Added:
- The `Analysis::SwitchIntData` assoc type and the
`Analysis::get_switch_int_data` method. Both only need to be
defined by analyses that look at `SwitchInt` terminators.
- The `MaybePlacesSwitchIntData` struct, which has three fields.
Changes:
- `Analysis::apply_switch_int_edge_effects` becomes
`Analysis::apply_switch_int_edge_effect`, which is a little simpler
because it's dealing with a single edge instead of all edges.
Removed:
- The `SwitchIntEdgeEffects` trait, and its two impls:
`BackwardSwitchIntEdgeEffectsApplier` (which has six fields) and
`ForwardSwitchIntEdgeEffectsApplier` structs (which has four fields).
- The closure.
The new structure is more concise and simpler.
- integrate it within existing fact generation instead of being called
in typeck
- simplify access fact extraction
- also remove single use fact emit functions in root fact generation
A couple of polonius fact generation cleanups
This PR is extracted from #134268 for easier review and contains its first two commits. They have already been reviewed by `@jackh726.`
r? `@jackh726`
- use consistent names
- inline single use functions
- dedupe and simplify some paths
- fix fact generation timer activity: it was missing the walk and
extraction process
Make some types and methods related to Polonius + Miri public
We have a tool, [Aquascope](https://github.com/cognitive-engineering-lab/aquascope/), which uses Polonius and Miri to visualize the compile-time and run-time semantics of a Rust program. Changes in the last few months to both APIs have hidden away details we depend upon. This PR re-exposes some of those details, specifically:
**Polonius:**
- `BorrowSet` and `BorrowData` are added to `rustc_borrowck::consumers`, and their fields are made `pub` instead of `pub(crate)`. We need this to interpret the `BorrowIndex`es generated by Polonius.
- `BorrowSet::build` is now `pub`. We need this because the borrowck API doesn't provide access to the `BorrowSet` constructed during checking.
- `PoloniusRegionVid` is added to `rustc_borrowck::consumers`. We need this because it's also contained in the Polonius facts.
**Miri:**
- `InterpCx::local_to_op` is now a special case of `local_at_frame_to_op`, which allows querying locals in any frame. We need this because we walk the whole stack at each step to collect the state of memory.
- `InterpCx::layout_of_local` is now `pub`. We need this because we need to know the layout of every local at each step.
If these changes go against some design goal for keeping certain types private, please let me know so we can hash out a better solution. Additionally, if there's a better way to document that it's important that certain types stay public, also let me know. For example, `BorrowSet` was previously public but was hidden in 6676cec, breaking our build.
cc ```@RalfJung``` ```@nnethercote``` ```@gavinleroy```
(Re-)Implement `impl_trait_in_bindings`
This reimplements the `impl_trait_in_bindings` feature for local bindings.
"`impl Trait` in bindings" serve as a form of *trait* ascription, where the type basically functions as an infer var but additionally registering the `impl Trait`'s trait bounds for the infer type. These trait bounds can be used to enforce that predicates hold, and can guide inference (e.g. for closure signature inference):
```rust
let _: impl Fn(&u8) -> &u8 = |x| x;
```
They are implemented as an additional set of bounds that are registered when the type is lowered during typeck, and then these bounds are tied to a given `CanonicalUserTypeAscription` for borrowck. We enforce these `CanonicalUserTypeAscription` bounds during borrowck to make sure that the `impl Trait` types are sensitive to lifetimes:
```rust
trait Static: 'static {}
impl<T> Static for T where T: 'static {}
let local = 1;
let x: impl Static = &local;
//~^ ERROR `local` does not live long enough
```
r? oli-obk
cc #63065
---
Why can't we just use TAIT inference or something? Well, TAITs in bodies have the problem that they cannot reference lifetimes local to a body. For example:
```rust
type TAIT = impl Display;
let local = 0;
let x: TAIT = &local;
//~^ ERROR `local` does not live long enough
```
That's because TAITs requires us to do *opaque type inference* which is pretty strict, since we need to remap all of the lifetimes of the hidden type to universal regions. This is simply not possible here.
---
I consider this part of the "impl trait everywhere" experiment. I'm not certain if this needs yet another lang team experiment.
rustc_borrowck: Stop suggesting the invalid syntax `&mut raw const`
A legitimate suggestion would be to change from
&raw const val
to
&raw mut val
But until we have figured out how to make that happen we should at least
stop suggesting invalid syntax.
I recommend review commit-by-commit.
Part of #127562
A legitimate suggestion would be to change from
&raw const val
to
&raw mut val
But until we have figured out how to make that happen we should at least
stop suggesting invalid syntax.
The words "before" and "after" have an obvious temporal meaning, e.g.
`seek_before_primary_effect`,
`visit_statement_{before,after}_primary_effect`. But "before" is also
used to name the effect that occurs before the primary effect of a
statement/terminator; this is `Effect::Before`. This leads to the
confusing possibility of talking about things happening "before/after
the before event".
This commit removes this awkward overloading of "before" by renaming
`Effect::Before` as `Effect::Early`. It also renames some of the
`Analysis` and `ResultsVisitor` methods to be more consistent.
Here are the before and after names:
- `Effect::{Before,Primary}` -> `Effect::{Early,Primary}`
- `apply_before_statement_effect` -> `apply_early_statement_effect`
- `apply_statement_effect` -> `apply_primary_statement_effect`
- `visit_statement_before_primary_effect` -> `visit_after_early_statement_effect`
- `visit_statement_after_primary_effect` -> `visit_after_primary_statement_effect`
(And s/statement/terminator/ for all the terminator events.)
Currently they are called (most common) `state`, or `trans`, or (rare)
`on_entry`. I think `trans` is short for "transfer function", which
perhaps made more sense when `GenKillAnalysis` existed. Using `state`
everywhere now is more consistent.
They are only present because it's currently defined in terms of the
domains of `Borrows` and `MaybeUninitializedPlaces` and
`EverInitializedPlaces` via associated types. This commit introduces
typedefs for those domains, avoiding the lifetimes.
Initial implementation of `#[feature(default_field_values]`, proposed in https://github.com/rust-lang/rfcs/pull/3681.
Support default fields in enum struct variant
Allow default values in an enum struct variant definition:
```rust
pub enum Bar {
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Allow using `..` without a base on an enum struct variant
```rust
Bar::Foo { .. }
```
`#[derive(Default)]` doesn't account for these as it is still gating `#[default]` only being allowed on unit variants.
Support `#[derive(Default)]` on enum struct variants with all defaulted fields
```rust
pub enum Bar {
#[default]
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Check for missing fields in typeck instead of mir_build.
Expand test with `const` param case (needs `generic_const_exprs` enabled).
Properly instantiate MIR const
The following works:
```rust
struct S<A> {
a: Vec<A> = Vec::new(),
}
S::<i32> { .. }
```
Add lint for default fields that will always fail const-eval
We *allow* this to happen for API writers that might want to rely on users'
getting a compile error when using the default field, different to the error
that they would get when the field isn't default. We could change this to
*always* error instead of being a lint, if we wanted.
This will *not* catch errors for partially evaluated consts, like when the
expression relies on a const parameter.
Suggestions when encountering `Foo { .. }` without `#[feature(default_field_values)]`:
- Suggest adding a base expression if there are missing fields.
- Suggest enabling the feature if all the missing fields have optional values.
- Suggest removing `..` if there are no missing fields.
Introduce `MixedBitSet`
`ChunkedBitSet` is good at avoiding excessive memory usage for programs with very large functgions where dataflow bitsets have very large domain sizes. But it's overly heavyweight for small bitsets, because any non-empty `ChunkedBitSet` takes up at least 256 bytes.
This PR introduces `MixedBitSet`, which is a simple bitset that uses `BitSet` for small/medium bitsets and `ChunkedBitSet` for large bitsets. It's a speed and memory usage win.
r? `@Mark-Simulacrum`
It's a performance win because `MixedBitSet` is faster and uses less
memory than `ChunkedBitSet`.
Also reflow some overlong comment lines in
`lint_tail_expr_drop_order.rs`.
stop replacing bivariant args with `'static` when computing closure requirements
It is unnecessary, these get constrained when checking that the opaque type is well-formed.
It also results in the opaque type no longer being well formed. If you've got `fn foo<'a>() -> impl Sized + 'a` the opaque is `type Opaque<'a, 'aDummy> where 'a: 'aDummy, 'aDummy: 'a` where `'aDummy` is bivariant. If we call `foo::<'b>()` inside of a closure and its return type ends up in a type test, we start out with the WF `Opaque<'b, 'b>`, and then replace the bivariant `'b` with `'static`. `Opaque<'b, 'static>` is no longer well-formed. Given how these type tests are used, I don't think this caused any practical issues.
r? types
It is unnecessary, these get constrained when checking that the
opaque type is well-formed.
It also results in the opaque type no longer being well formed.
If you've got `fn foo<'a>() -> impl Sized + 'a` the opaque is
`type Opaque<'a, 'aDummy> where 'a: 'aDummy, 'aDummy: 'a` where
`'aDummy` is bivariant. If we call `foo::<'b>()` inside of a closure
and its return type ends up in a type test, we start out with the WF
`Opaque<'b, 'b>`, and then replace the bivariant `'b` with `'static`.
`Opaque<'b, 'static>` is no longer well-formed. Given how these type
tests are used, I don't think this caused any practical issues.
take 2
open up coroutines
tweak the wordings
the lint works up until 2021
We were missing one case, for ADTs, which was
causing `Result` to yield incorrect results.
only include field spans with significant types
deduplicate and eliminate field spans
switch to emit spans to impl Drops
Co-authored-by: Niko Matsakis <nikomat@amazon.com>
collect drops instead of taking liveness diff
apply some suggestions and add explantory notes
small fix on the cache
let the query recurse through coroutine
new suggestion format with extracted variable name
fine-tune the drop span and messages
bugfix on runtime borrows
tweak message wording
filter out ecosystem types earlier
apply suggestions
clippy
check lint level at session level
further restrict applicability of the lint
translate bid into nop for stable mir
detect cycle in type structure
There is an `Rc<UniversalRegions>` within `UniversalRegionRelations`,
and yet the two types get passed around in tandem a lot.
This commit makes `UniversalRegionRelations` own `UniversalRegions`,
removing the `Rc` (which wasn't truly needed) and the tandem-passing.
This requires adding a `universal_relations` method to
`UniversalRegionRelations`, and renaming a couple of existing methods
producing iterators to avoid a name clash.
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
`suggest_borrow_generic_arg`: instantiate clauses properly
This simplifies and fixes the way `suggest_borrow_generic_arg` instantiates callees' predicates when testing them to see if a moved argument can instead be borrowed. Previously, it would ICE if the moved argument's type included a region variable, since it was getting passed to a call of `EarlyBinder::instantiate`. This makes the instantiation much more straightforward, which also fixes the ICE.
Fixes#133118
This also modifies `tests/ui/moves/moved-value-on-as-ref-arg.rs` to have more useful bounds on the tests for suggestions to borrow `Borrow` and `BorrowMut` arguments. With its old tautological `T: BorrowMut<T>` bound, this fix would make it suggest a shared borrow for that argument.
Fixes issue 133118.
This also modifies `tests/ui/moves/moved-value-on-as-ref-arg.rs` to have more
useful bounds on the tests for suggestions to borrow `Borrow` and `BorrowMut`
arguments. With its old tautological `T: BorrowMut<T>` bound, this fix would
make it suggest a shared borrow for that argument.
This subsumes the suggestions to borrow arguments with `AsRef`/`Borrow` bounds and those to borrow
arguments with `Fn` and `FnMut` bounds. It works for other traits implemented on references as well,
such as `std::io::Read`, `std::io::Write`, and `core::fmt::Write`.
Incidentally, by making the logic for suggesting borrowing closures general, this removes some
spurious suggestions to mutably borrow `FnMut` closures in assignments, as well as an unhelpful
suggestion to add a `Clone` constraint to an `impl Fn` argument.
This is setup for unifing the logic for suggestions to borrow arguments in generic positions.
As of this commit, it's still special cases for `AsRef`/`Borrow`-like traits and `Fn`-like traits.
This also downgrades its applicability to MaybeIncorrect. Its suggestion can result in ill-typed
code when the type parameter it suggests providing a different generic argument for appears
elsewhere in the callee's signature or predicates.
Remove unnecessary pub enum glob-imports from `rustc_middle::ty`
We used to have an idiom in the compiler where we'd prefix or suffix all the variants of an enum, for example `BoundRegionKind`, with something like `Br`, and then *glob-import* that enum variant directly.
`@noratrieb` brought this up, and I think that it's easier to read when we just use the normal style `EnumName::Variant`.
This PR is a bit large, but it's just naming.
The only somewhat opinionated change that this PR does is rename `BorrowKind::Imm` to `BorrowKind::Immutable` and same for the other variants. I think these enums are used sparingly enough that the extra length is fine.
r? `@noratrieb` or reassign
Now that `Results` is the only impl of `ResultsVisitable`, the trait can
be removed. This simplifies things by removining unnecessary layers of
indirection and abstraction.
- `ResultsVisitor` is simpler.
- Its type parameter changes from `R` (an analysis result) to the
simpler `A` (an analysis).
- It no longer needs the `Domain` associated type, because it can use
`A::Domain`.
- Occurrences of `R` become `Results<'tcx, A>`, because there is now
only one kind of analysis results.
- `save_as_intervals` also changes type parameter from `R` to `A`.
- The `results.reconstruct_*` method calls are replaced with
`results.analysis.apply_*` method calls, which are equivalent.
- `Direction::visit_results_in_block` is simpler, with a single generic
param (`A`) instead of two (`D` and `R`/`F`, with a bound connecting
them). Likewise for `visit_results`.
- The `ResultsVisitor` impls for `MirBorrowCtxt` and
`StorageConflictVisitor` are now specific about the type of the
analysis results they work with. They both used to have a type param
`R` but they weren't genuinely generic. In both cases there was only a
single results type that made sense to instantiate them with.
The results of most analyses end up in a `Results<'tcx, A>`, where `A`
is the analysis. It's then possible to traverse the results via a
`ResultsVisitor`, which relies on the `ResultsVisitable` trait. (That
trait ends up using the same `apply_*` methods that were used when
computing the analysis, albeit indirectly.)
This pattern of "compute analysis results, then visit them" is common.
But there is one exception. For borrow checking we compute three
separate analyses (`Borrows`, `MaybeUninitializedPlaces`, and
`EverInitializedPlaces`), combine them into a single `BorrowckResults`,
and then do a single visit of that `BorrowckResults` with
`MirBorrowckResults`. `BorrowckResults` is just different enough from
`Results` that it requires the existence of `ResultsVisitable`, which
abstracts over the traversal differences between `Results` and
`BorrowckResults`.
This commit changes things by introducing `Borrowck` and bundling the
three borrowck analysis results into a standard `Results<Borrowck>`
instead of the exceptional `BorrowckResults`. Once that's done, the
results can be visited like any other analysis results.
`BorrowckResults` is removed, as is `impl ResultsVisitable for
BorrowckResults`. (It's instructive to see how similar the added `impl
Analysis for Borrowck` is to the removed `impl ResultsVisitable for
BorrowckResults`. They're both doing exactly the same things.)
Overall this increases the number of lines of code and might not seem
like a win. But it enables the removal of `ResultsVisitable` in the next
commit, which results in many simplifications.
- Store a mut ref to a `BorrowckDiags` in `MirBorrowckCtxt` instead of
owning it, to save having to pass ownership in and out of
`promoted_mbcx`.
- Use `buffer_error` in a couple of suitable places.
Because there is no real reason for it to be a separate struct.
- It has no methods.
- It's easy to confuse with the nearby `BorrowckInferContext` (which
does have methods).
- The `mut` ref to it in `TypeChecker` makes it seem like any of the
fields within might be mutable, but only two (`all_facts` and
`constraints`) actually are.
- Two of the fields are `pub(crate)` but can be private.
This change makes a lot of code more concise and readable.
It's strange to have a struct that contains a single anonymous field
that is an enum. This commit merges them. This does require increasing
the visibility of `TypeOfInfo` to `pub(crate)`, but that seems
worthwhile.
Remove region from adjustments
It's not necessary to store this region, because it's only used in THIR and MemCat/ExprUse, both of which already basically only deal with erased regions anyways.
This is a standard pattern:
```
MyAnalysis.into_engine(tcx, body).iterate_to_fixpoint()
```
`into_engine` and `iterate_to_fixpoint` are always called in pairs, but
sometimes with a builder-style `pass_name` call between them. But a
builder-style interface is overkill here. This has been bugging me a for
a while.
This commit:
- Merges `Engine::new` and `Engine::iterate_to_fixpoint`. This removes
the need for `Engine` to have fields, leaving it as a trivial type
that the next commit will remove.
- Renames `Analysis::into_engine` as `Analysis::iterate_to_fixpoint`,
gives it an extra argument for the optional pass name, and makes it
call `Engine::iterate_to_fixpoint` instead of `Engine::new`.
This turns the pattern from above into this:
```
MyAnalysis.iterate_to_fixpoint(tcx, body, None)
```
which is shorter at every call site, and there's less plumbing required
to support it.
Deeply normalize `TypeTrace` when reporting type error in new solver
Normalize the values that come from the `TypeTrace` for various type mismatches.
Side-note: We can't normalize the `TypeError` itself bc it may come from instantiated binders, so it may reference values from within the probe...
r? lcnr
Continue to get rid of `ty::Const::{try_}eval*`
This PR mostly does:
* Removes all of the `try_eval_*` and `eval_*` helpers from `ty::Const`, and replace their usages with `try_to_*`.
* Remove `ty::Const::eval`.
* Rename `ty::Const::normalize` to `ty::Const::normalize_internal`. This function is still used in the normalization code itself.
* Fix some weirdness around the `TransmuteFrom` goal.
I'm happy to split it out further; for example, I could probably land the first part which removes the helpers, or the changes to codegen which are more obvious than the changes to tools.
r? BoxyUwU
Part of https://github.com/rust-lang/rust/issues/130704
Remove `GenKillAnalysis`
There are two kinds of dataflow analysis in the compiler: `Analysis`, which is the basic kind, and `GenKillAnalysis`, which is a more specialized kind for gen/kill analyses that is intended as an optimization. However, it turns out that `GenKillAnalysis` is actually a pessimization! It's faster (and much simpler) to do all the gen/kill analyses via `Analysis`. This lets us remove `GenKillAnalysis`, and `GenKillSet`, and a few other things, and also merge `AnalysisDomain` into `Analysis`. The PR removes 500 lines of code and improves performance.
r? `@tmiasko`
Use `ThinVec` for PredicateObligation storage
~~I noticed while profiling clippy on a project that a large amount of time is being spent allocating `Vec`s for `PredicateObligation`, and the `Vec`s are often quite small. This is an attempt to optimise this by using SmallVec to avoid heap allocations for these common small Vecs.~~
This PR turns all the `Vec<PredicateObligation>` into a single type alias while avoiding referring to `Vec` around it, then swaps the type over to `ThinVec<PredicateObligation>` and fixes the fallout. This also contains an implementation of `ThinVec::extract_if`, copied from `Vec::extract_if` and currently being upstreamed to https://github.com/Gankra/thin-vec/pull/66.
This leads to a small (0.2-0.7%) performance gain in the latest perf run.
`GenKillAnalysis` has very similar methods to `Analysis`, but the first
two have a notable difference: the second argument is `&mut impl
GenKill<Self::Idx>` instead of `&mut Self::Domain`. But thanks to the
previous commit, this difference is no longer necessary.
stabilize `ci_rustc_if_unchanged_logic` test
Makes `ci_rustc_if_unchanged_logic` test more stable and re-enables it. Previously, it was expecting CI-rustc to be used all the time when there were no changes, which wasn’t always the case. Purpose of this test is making sure we don't use CI-rustc while there are changes in compiler and/or library, but we don't really need to cover cases where CI-rustc is not enabled.
Second commit was pushed for making a change in the compiler tree, so `ci_rustc_if_unchanged_logic` can be tested properly in merge CI.
- fix for divergence
- fix error message
- fix another cranelift test
- fix some cranelift things
- don't set the NORETURN option for naked asm
- fix use of naked_asm! in doc comment
- fix use of naked_asm! in run-make test
- use `span_bug` in unreachable branch
Make opaque types regular HIR nodes
Having opaque types as HIR owner introduces all sorts of complications. This PR proposes to make them regular HIR nodes instead.
I haven't gone through all the test changes yet, so there may be a few surprises.
Many thanks to `@camelid` for the first draft.
Fixes https://github.com/rust-lang/rust/issues/129023Fixes#129099Fixes#125843Fixes#119716Fixes#121422
Stabilize the `map`/`value` methods on `ControlFlow`
And fix the stability attribute on the `pub use` in `core::ops`.
libs-api in https://github.com/rust-lang/rust/issues/75744#issuecomment-2231214910 seemed reasonably happy with naming for these, so let's try for an FCP.
Summary:
```rust
impl<B, C> ControlFlow<B, C> {
pub fn break_value(self) -> Option<B>;
pub fn map_break<T>(self, f: impl FnOnce(B) -> T) -> ControlFlow<T, C>;
pub fn continue_value(self) -> Option<C>;
pub fn map_continue<T>(self, f: impl FnOnce(C) -> T) -> ControlFlow<B, T>;
}
```
Resolves#75744
``@rustbot`` label +needs-fcp +t-libs-api -t-libs
---
Aside, in case it keeps someone else from going down the same dead end: I looked at the `{break,continue}_value` methods and tried to make them `const` as part of this, but that's disallowed because of not having `const Drop`, so put it back to not even unstably-const.
The `regioncx` and `borrow_set` fields can be references instead of
`Rc`. They use the existing `'a` lifetime. This avoids some heap
allocations and is a bit simpler.
Add `File` constructors that return files wrapped with a buffer
In addition to the light convenience, these are intended to raise visibility that buffering is something you should consider when opening a file, since unbuffered I/O is a common performance footgun to Rust newcomers.
ACP: https://github.com/rust-lang/libs-team/issues/446
Tracking Issue: #130804
This changes the remaining span for the cast, because the new `Cast`
category has a higher priority (lower `Ord`) than the old `Coercion`
category, so we no longer report the region error for the "unsizing"
coercion from `*const Trait` to itself.
This commit adds basic support for reborrowing `Pin` types in argument
position. At the moment it only supports reborrowing `Pin<&mut T>` as
`Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in
argument position (not as the receiver in a method call).
- Replace non-standard names like 's, 'p, 'rg, 'ck, 'parent, 'this, and
'me with vanilla 'a. These are cases where the original name isn't
really any more informative than 'a.
- Replace names like 'cx, 'mir, and 'body with vanilla 'a when the lifetime
applies to multiple fields and so the original lifetime name isn't
really accurate.
- Put 'tcx last in lifetime lists, and 'a before 'b.
Rescope temp lifetime in if-let into IfElse with migration lint
Tracking issue #124085
This PR shortens the temporary lifetime to cover only the pattern matching and consequent branch of a `if let`.
At the expression location, means that the lifetime is shortened from previously the deepest enclosing block or statement in Edition 2021. This warrants an Edition change.
Coming with the Edition change, this patch also implements an edition lint to warn about the change and a safe rewrite suggestion to preserve the 2021 semantics in most cases.
Related to #103108.
Related crater runs: https://github.com/rust-lang/rust/pull/129466.
Simplify some nested `if` statements
Applies some but not all instances of `clippy::collapsible_if`. Some ended up looking worse afterwards, though, so I left those out. Also applies instances of `clippy::collapsible_else_if`
Review with whitespace disabled please.
There are four related dataflow structs: `MaybeInitializedPlaces`,
`MaybeUninitializedPlaces`, and `EverInitializedPlaces`,
`DefinitelyInitializedPlaces`. They all have a `&Body` and a
`&MoveData<'tcx>` field. The first three use different lifetimes for the
two fields, but the last one uses the same lifetime for both.
This commit changes the first three to use the same lifetime, removing
the need for one of the lifetimes. Other structs that also lose a
lifetime as a result of this are `LivenessContext`, `LivenessResults`,
`InitializationData`.
It then does similar things in various other structs.
Make `Ty::boxed_ty` return an `Option`
Looks like a good place to use Rust's type system.
---
Most of 4ac7bcbaad/compiler/rustc_middle/src/ty/sty.rs (L971-L1963) looks like it could be moved to `TyKind` (then I guess `Ty` should be made to deref to `TyKind`).
Check WF of source type's signature on fn pointer cast
This PR patches the implied bounds holes slightly for #129005, #25860.
Like most implied bounds related unsoundness fixes, this isn't complete w.r.t. higher-ranked function signatures, but I believe it implements a pretty good heuristic for now.
### What does this do?
This PR makes a partial patch for a soundness hole in a `FnDef` -> `FnPtr` "reifying" pointer cast where we were never checking that the signature we are casting *from* is actually well-formed. Because of this, and because `FnDef` doesn't require its signature to be well-formed (just its predicates must hold), we are essentially allowed to "cast away" implied bounds that are assumed within the body of the `FnDef`:
```
fn foo<'a, 'b, T>(_: &'a &'b (), v: &'b T) -> &'a T { v }
fn bad<'short, T>(x: &'short T) -> &'static T {
let f: fn(_, &'short T) -> &'static T = foo;
f(&&(), x)
}
```
In this example, subtyping ends up casting the `_` type (which should be `&'static &'short ()`) to some other type that no longer serves as a "witness" to the lifetime relationship `'short: 'static` which would otherwise be required for this call to be WF. This happens regardless of if `foo`'s lifetimes are early- or late-bound.
This PR implements two checks:
1. We check that the signature of the `FnDef` is well-formed *before* casting it. This ensures that there is at least one point in the MIR where we ensure that the `FnDef`'s implied bounds are actually satisfied by the caller.
2. Implements a special case where if we're casting from a higher-ranked `FnDef` to a non-higher-ranked, we instantiate the binder of the `FnDef` with *infer vars* and ensure that it is a supertype of the target of the cast.
The (2.) is necessary to validate that these pointer casts are valid for higher-ranked `FnDef`. Otherwise, the example above would still pass even if `help`'s `'a` lifetime were late-bound.
### Further work
The WF checks for function calls are scattered all over the MIR. We check the WF of args in call terminators, we check the WF of `FnDef` when we create a `const` operand referencing it, and we check the WF of the return type in #115538, to name a few.
One way to make this a bit cleaner is to simply extend #115538 to always check that the signature is WF for `FnDef` types. I may do this as a follow-up, but I wanted to keep this simple since this leads to some pretty bad NLL diagnostics regressions, and AFAICT this solution is *complete enough*.
### Crater triage
Done here: https://github.com/rust-lang/rust/pull/129021#issuecomment-2297702647
r? lcnr
Remove `#[macro_use] extern crate tracing`, round 4
Because explicit importing of macros via use items is nicer (more standard and readable) than implicit importing via #[macro_use]. Continuing the work from #124511, #124914, and #125434. After this PR no `rustc_*` crates use `#[macro_use] extern crate tracing` except for `rustc_codegen_gcc` which is a special case and I will do separately.
r? ```@jieyouxu```
Remove Duplicate E0381 Label
Aims to resolve https://github.com/rust-lang/rust/issues/129274, and adds a test for the case.
Essentially, we are duplicating this span for some reason. For now, I'm just using a set to collect the spans rather than the vec. I imagine there's probably no real reason to inspect duplicates in this area, but if I'm wrong I can adjust to collect "seen spans" in just the point where this label is applied.
I'm not sure why it's producing duplicate spans. Looks like this has been this way for a while? I think it gives the duplicate label on 1.75.0 for example.
Add `#[warn(unreachable_pub)]` to a bunch of compiler crates
By default `unreachable_pub` identifies things that need not be `pub` and tells you to make them `pub(crate)`. But sometimes those things don't need any kind of visibility. So they way I did these was to remove the visibility entirely for each thing the lint identifies, and then add `pub(crate)` back in everywhere the compiler said it was necessary. (Or occasionally `pub(super)` when context suggested that was appropriate.) Tedious, but results in more `pub` removal.
There are plenty more crates to do but this seems like enough for a first PR.
r? `@compiler-errors`