Change the implicit `Sized` `Obligation` `Span` for call expressions to
include the whole expression. This aids the existing deduplication
machinery to reduce the number of errors caused by a single unsized
expression.
Remove special-casing around `AliasKind::Opaque` when structurally resolving in new solver
This fixes a few inconsistencies around where we don't eagerly resolve opaques to their (locally-defined) hidden types in the new solver. It essentially allows this code to work:
```rust
fn main() {
type Tait = impl Sized;
struct S {
i: i32,
}
let x: Tait = S { i: 0 };
println!("{}", x.i);
}
```
Since `Tait` is defined in `main`, we are able to poke through the type of `x` with deref.
r? lcnr
-Znext-solver: adapt overflow rules to avoid breakage
Do not erase overflow constraints if they are from equating the impl header when normalizing[^1].
This should be the minimal change to not break crates depending on the old project behavior of "apply impl constraints while only lazily evaluating any nested goals".
Fixes https://github.com/rust-lang/trait-system-refactor-initiative/issues/70, see https://hackmd.io/ATf4hN0NRY-w2LIVgeFsVg for the reasoning behind this.
Only keeping constraints on overflow for `normalize-to` goals as that's the only thing needed for backcompat. It also allows us to not track the origin of root obligations. The issue with root goals would be something like the following:
```rust
trait Foo {}
trait Bar {}
trait FooBar {}
impl<T: Foo + Bar> FooBar for T {}
// These two should behave the same, rn we can drop constraints for both,
// but if we don't drop `Misc` goals we would only drop the constraints for
// `FooBar` unless we track origins of root obligations.
fn func1<T: Foo + Bar>() {}
fn func2<T: FooBaz>() {}
```
[^1]: mostly, the actual rules are slightly different
r? ``@compiler-errors``