This section name is always constant for a given target, but obtaining it from
LLVM requires a few intermediate allocations. There's no need to do so
repeatedly from inside a per-function loop.
Both GCC and Clang write by default a `.comment` section with compiler
information:
```txt
$ gcc -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] GCC: (GNU) 11.2.0
$ clang -c -xc /dev/null && readelf -p '.comment' null.o
String dump of section '.comment':
[ 1] clang version 14.0.1 (https://github.com/llvm/llvm-project.git c62053979489ccb002efe411c3af059addcb5d7d)
```
They also implement the `-Qn` flag to avoid doing so:
```txt
$ gcc -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
$ clang -Qn -c -xc /dev/null && readelf -p '.comment' null.o
readelf: Warning: Section '.comment' was not dumped because it does not exist!
```
So far, `rustc` only does it for WebAssembly targets and only
when debug info is enabled:
```txt
$ echo 'fn main(){}' | rustc --target=wasm32-unknown-unknown --emit=llvm-ir -Cdebuginfo=2 - && grep llvm.ident rust_out.ll
!llvm.ident = !{!27}
```
In the RFC part of this PR it was decided to always add
the information, which gets us closer to other popular compilers.
An opt-out flag like GCC and Clang may be added later on if deemed
necessary.
Implementation-wise, this covers both `ModuleLlvm::new()` and
`ModuleLlvm::new_metadata()` cases by moving the addition to
`context::create_module` and adds a few test cases.
ThinLTO also sees the `llvm.ident` named metadata duplicated (in
temporary outputs), so this deduplicates it like it is done for
`wasm.custom_sections`. The tests also check this duplication does
not take place.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Prototype: Add unstable `-Z reference-niches` option
MCP: rust-lang/compiler-team#641
Relevant RFC: rust-lang/rfcs#3204
This prototype adds a new `-Z reference-niches` option, controlling the range of valid bit-patterns for reference types (`&T` and `&mut T`), thereby enabling new enum niching opportunities. Like `-Z randomize-layout`, this setting is crate-local; as such, references to built-in types (primitives, tuples, ...) are not affected.
The possible settings are (here, `MAX` denotes the all-1 bit-pattern):
| `-Z reference-niches=` | Valid range |
|:---:|:---:|
| `null` (the default) | `1..=MAX` |
| `size` | `1..=(MAX- size)` |
| `align` | `align..=MAX.align_down_to(align)` |
| `size,align` | `align..=(MAX-size).align_down_to(align)` |
------
This is very WIP, and I'm not sure the approach I've taken here is the best one, but stage 1 tests pass locally; I believe this is in a good enough state to unleash this upon unsuspecting 3rd-party code, and see what breaks.
Support `--print KIND=PATH` command line syntax
As is already done for `--emit KIND=PATH` and `-L KIND=PATH`.
In the discussion of #110785, it was pointed out that `--print KIND=PATH` is nicer than trying to apply the single global `-o` path to `--print`'s output, because in general there can be multiple print requests within a single rustc invocation, and anyway `-o` would already be used for a different meaning in the case of `link-args` and `native-static-libs`.
I am interested in using `--print cfg=PATH` in Buck2. Currently Buck2 works around the lack of support for `--print KIND=PATH` by [indirecting through a Python wrapper script](d43cf3a51a/prelude/rust/tools/get_rustc_cfg.py) to redirect rustc's stdout into the location dictated by the build system.
From skimming Cargo's usages of `--print`, it definitely seems like it would benefit from `--print KIND=PATH` too. Currently it is working around the lack of this by inserting `--crate-name=___ --print=crate-name` so that it can look for a line containing `___` as a delimiter between the 2 other `--print` informations it actually cares about. This is commented as a "HACK" and "abuse". 31eda6f7c3/src/cargo/core/compiler/build_context/target_info.rs (L242) (FYI `@weihanglo` as you dealt with this recently in https://github.com/rust-lang/cargo/pull/11633.)
Mentioning reviewers active in #110785: `@fee1-dead` `@jyn514` `@bjorn3`
Resurrect: rustc_llvm: Add a -Z `print-codegen-stats` option to expose LLVM statistics.
This resurrects PR https://github.com/rust-lang/rust/pull/104000, which has sat idle for a while. And I want to see the effect of stack-move optimizations on LLVM (like https://reviews.llvm.org/D153453) :).
I have applied the changes requested by `@oli-obk` and `@nagisa` https://github.com/rust-lang/rust/pull/104000#discussion_r1014625377 and https://github.com/rust-lang/rust/pull/104000#discussion_r1014642482 in the latest commits.
r? `@oli-obk`
-----
LLVM has a neat [statistics](https://llvm.org/docs/ProgrammersManual.html#the-statistic-class-stats-option) feature that tracks how often optimizations kick in. It's very handy for optimization work. Since we expose the LLVM pass timings, I thought it made sense to expose the LLVM statistics too.
-----
(Edit: fix broken link
(Edit2: fix segmentation fault and use malloc
If `rustc` is built with
```toml
[llvm]
assertions = true
```
Then you can see like
```
rustc +stage1 -Z print-codegen-stats -C opt-level=3 tmp.rs
===-------------------------------------------------------------------------===
... Statistics Collected ...
===-------------------------------------------------------------------------===
3 aa - Number of MayAlias results
193 aa - Number of MustAlias results
531 aa - Number of NoAlias results
...
```
And the current default build emits only
```
$ rustc +stage1 -Z print-codegen-stats -C opt-level=3 tmp.rs
===-------------------------------------------------------------------------===
... Statistics Collected ...
===-------------------------------------------------------------------------===
$
```
This might be better to emit the message to tell assertion flag necessity, but now I can't find how to do that...
Add the `no-builtins` attribute to functions when `no_builtins` is applied at the crate level.
**When `no_builtins` is applied at the crate level, we should add the `no-builtins` attribute to each function to ensure it takes effect in LTO.**
This is also the reason why no_builtins does not take effect in LTO as mentioned in #35540.
Now, `#![no_builtins]` should be similar to `-fno-builtin` in clang/gcc, see https://clang.godbolt.org/z/z4j6Wsod5.
Next, we should make `#![no_builtins]` participate in LTO again. That makes sense, as LTO also takes into consideration function-level instruction optimizations, such as the MachineOutliner. More importantly, when a user writes a large `#![no_builtins]` crate, they would like this crate to participate in LTO as well.
We should also add a function-level no_builtins attribute to allow users to have more control over it. This is similar to Clang's `__attribute__((no_builtin))` feature, see https://clang.godbolt.org/z/Wod6KK6eq. Before implementing this feature, maybe we should discuss whether to support more fine-grained control, such as `__attribute__((no_builtin("memcpy")))`.
Related discussions:
- #109821
- #35540
Next (a separate pull request?):
- [ ] Revert #35637
- [ ] Add a function-level `no_builtin` attribute?
Better diagnostics for dlltool errors.
When dlltool fails, show the full command that was executed. In particular, llvm-dlltool is not very helpful, printing a generic usage message rather than what actually went wrong, so stdout and stderr aren't of much use when troubleshooting.
When dlltool fails, show the full command that was executed. In
particular, llvm-dlltool is not very helpful, printing a generic usage
message rather than what actually went wrong, so stdout and stderr
aren't of much use when troubleshooting.
LLVM has a neat [statistics] feature that tracks how often optimizations kick
in. It's very handy for optimization work. Since we expose the LLVM pass
timings, I thought it made sense to expose the LLVM statistics too.
[statistics]: https://llvm.org/docs/ProgrammersManual.html#the-statistic-class-stats-option
Remove `LLVMRustCoverageHashCString`
Coverage has two FFI functions for computing the hash of a byte string. One takes a ptr/len pair (`LLVMRustCoverageHashByteArray`), and the other takes a NUL-terminated C string (`LLVMRustCoverageHashCString`).
But on closer inspection, the C string version is unnecessary. The calling-side code converts a Rust `&str` into a `CString`, and the C++ code then immediately turns it back into a ptr/len string before actually hashing it. So we can just call the ptr/len version directly instead.
---
This PR also fixes a bug in the C++ declaration of `LLVMRustCoverageHashByteArray`. It should be `size_t`, since that's what is declared and passed on the Rust side, and it's what `StrRef`'s constructor expects to receive on the callee side.
Coverage has two FFI functions for computing the hash of a byte string. One
takes a ptr/len pair, and the other takes a NUL-terminated C string.
But on closer inspection, the C string version is unnecessary. The calling-side
code converts a Rust `&str` into a C string, and the C++ code then immediately
turns it back into a ptr/len string before actually hashing it.
The function body immediately treats it as a slice anyway, so this just makes
it possible to call the hash function with arbitrary read-only byte slices.
Move `TyCtxt::mk_x` to `Ty::new_x` where applicable
Part of rust-lang/compiler-team#616
turns out there's a lot of places we construct `Ty` this is a ridiculously huge PR :S
r? `@oli-obk`
Revert the lexing of `c"…"` string literals
Fixes \[after beta-backport\] #113235.
Further progress is tracked in #113333.
This PR *manually* reverts parts of #108801 (since a git-revert would've been too coarse-grained & messy)
and git-reverts #111647.
CC `@fee1-dead` (#108801) `@klensy` (#111647)
r? `@compiler-errors`
`@rustbot` label F-c_str_literals beta-nominated
Add `-Zremark-dir` unstable flag to write LLVM optimization remarks to YAML
This PR adds an option for `rustc` to emit LLVM optimization remarks to a set of YAML files, which can then be digested by existing tools, like https://github.com/OfekShilon/optview2. When `-Cremark-dir` is passed, and remarks are enabled (`-Cremark=all`), the remarks will be now written to the specified directory, **instead** of being printed to standard error output. The files are named based on the CGU from which they are being generated.
Currently, the remarks are written using the LLVM streaming machinery, directly in the diagnostics handler. It seemed easier than going back to Rust and then form there back to C++ to use the streamer from the diagnostics handler. But there are many ways to implement this, of course, so I'm open to suggestions :)
I included some comments with questions into the code. Also, I'm not sure how to test this.
r? `@tmiasko`
Support for native WASM exceptions
### Motivation
Currently, rustc does not support native WASM exceptions. It does support JavaScript based exceptions for the wasm32-emscripten-target, but this requires back&forth with javascript for many calls, which is very slow.
Native wasm support for exceptions is quite common: Clang+LLVM implemented them years ago, and all major browsers support them by now. They enable zero-cost exceptions, at least with regard to runtime-performance-cost. They may increase startup-time and code size, though.
### Important: This PR does not change default behaviour
Exceptions usually add a lot of code in form of unwinding blocks, increasing the binary size. Most users probably do not want that, especially which regard to web development.
Therefore, wasm exceptions play a similar role as WASM-threads: rustc should support them, like clang does, but users who want to use it have to use some command-line magic like rustflags to opt in.
### What does this PR do?
As stated above, the default behaviour is not changed. It is already possible to opt-in into wasm exceptions using the command line. Unfortunately, the LLVM IR is invalid and the LLVM backend crashes.
```
rustc <sourcefile>
--target wasm32-unknown-unknown
-C panic=unwind
-C llvm-args=-wasm-enable-eh
-C target-feature=+exception-handling
```
As it turns out, LLVM is quite picky when it comes to IR for exception handling. If the IR does not look exactly like it should, some LLVM-assertions fail and the code generation crashes.
This PR adds the necessary modifications to the code generator to make it work. It also adds `exception-handling` as a wasm target feature.
### What this PR does not / what is missing
This PR is not a full fledges solution. It is the first step. A few parts are still missing; however, it is already useable (see next section).
Currently missing:
* The std library has to be adapted. Currently, only [no_std] crates work
* Usually, nested exceptions abort the program (i.e. a panic during the cleanup of another panic). This is currently not done yet.
- Currently, code inside cleanup handlers does not unwind
- To fix this requires a little more work: The code generator currently maintains a single terminate block per function for this. Unfortunately, WASM requires funclet based exception handling. Therefore, we need to create a terminate block per funclet. This is probably not a big problem, but I want to keep this PR simple.
### How to use the compiler given this PR?
This PR does not add any command line flags or features. It uses those which are already there. To compile with exceptions enabled, you need
* to set the panic strategy to unwind, i.e. `-C panic=unwind`
* to enable the exception-handling target feature, i.e. `-C target-feature=+exception-handling`
* to tell LLVM about the exception handling, i.e. `-C llvm-args=-wasm-enable-eh`
Since the standard library has not been adapted, you can only use it in [no_std] crates as of now. The intrinsic `core::intrinsics::r#try` works. To throw exceptions, you need the ```@llvm.wasm.throw``` intrinsic.
I created a sample application which works for me: https://github.com/mirkootter/rust-wasm-demos
This example can be run at https://webassembly.sh
After the last commit, they contain `Option<&OperandBundleDef<'a>>` but
the values are always `Some(_)`. This commit removes the needless
`Option` wrapper. This also simplifies the type signatures of
`LLVMRustBuild{Invoke,Call}`, which were relying on the fact that the
represention of `Option<&T>` is the same as `&T` for non-`None` values.
They never have a length of more than two. So this commit changes them
to `SmallVec<[_; 2]>`.
Also, we possibly push `None` values and then filter those `None` values
out again with `retain`. So this commit removes the `retain` and instead
only pushes the values if they are `Some(_)`.
I don't know why `SmallStr` was used here; some ad hoc profiling showed
this code is not that hot, the string is usually empty, and when it's
not empty it's usually very short. However, the use of a
`SmallStr<1024>` does result in 1024 byte `memcpy` call on each
execution, which shows up when I do `memcpy` profiling. So using a
normal string makes the code both simpler and very slightly faster.