Remove redundant check in `symlink_hard_link` test
We support macOS 10.12 and above, so it now always uses `linkat`, and so the check is redundant.
This was missed in #126351.
``@rustbot`` label O-macos
Break into the debugger (if attached) on panics (Windows, Linux, macOS, FreeBSD)
The developer experience for panics is to provide the backtrace and
exit the program. When running under debugger, that might be improved
by breaking into the debugger once the code panics thus enabling
the developer to examine the program state at the exact time when
the code panicked.
Let the developer catch the panic in the debugger if it is attached.
If the debugger is not attached, nothing changes. Providing this feature
inside the standard library facilitates better debugging experience.
Validated under Windows, Linux, macOS 14.6, and FreeBSD 13.3..14.1.
Inaccurate `{Path,OsStr}::to_string_lossy()` documentation
The documentation of `Path::to_string_lossy()` and `OsStr::to_string_lossy()` says the following:
> Any non-Unicode sequences are replaced with `U+FFFD REPLACEMENT CHARACTER`
which didn't immediately make sense to me. ("non-Unicode sequences"?)
Since both `to_string_lossy` functions eventually become just a call to `String::from_utf8_lossy`, I believe the documentation meant to say:
> Any *non-UTF-8* sequences are replaced with `U+FFFD REPLACEMENT CHARACTER`
This PR corrects this mistake in the documentation.
For the record, a similar quote can be found in the documentation of `String::from_utf8_lossy`:
> ... During this conversion, `from_utf8_lossy()` will replace any invalid UTF-8 sequences with `U+FFFD REPLACEMENT CHARACTER`, ...
The developer experience for panics is to provide the backtrace and
exit the program. When running under debugger, that might be improved
by breaking into the debugger once the code panics thus enabling
the developer to examine the program state at the exact time when
the code panicked.
Let the developer catch the panic in the debugger if it is attached.
If the debugger is not attached, nothing changes. Providing this feature
inside the standard library facilitates better debugging experience.
Validated under Windows, Linux, macOS 14.6, and FreeBSD 13.3..14.1.
Add target support for RTEMS Arm
# `armv7-rtems-eabihf`
This PR adds a new target for the RTEMS RTOS. To get things started it focuses on Xilinx/AMD Zynq-based targets, but in theory it should also support other armv7-based board support packages in the future.
Given that RTEMS has support for many POSIX functions it is mostly enabling corresponding unix features for the new target.
I also previously started a PR in libc (https://github.com/rust-lang/libc/pull/3561) to add the needed OS specific C-bindings and was told that a PR in this repo is needed first. I will update the PR to the newest version after approval here.
I will probably also need to change one line in the backtrace repo.
Current status is that I could compile rustc for the new target locally (with the updated libc and backtrace) and could compile binaries, link, and execute a simple "Hello World" RTEMS application for the target hardware.
> A proposed target or target-specific patch that substantially changes code shared with other targets (not just target-specific code) must be reviewed and approved by the appropriate team for that shared code before acceptance.
There should be no breaking changes for existing targets. Main changes are adding corresponding `cfg` switches for the RTEMS OS and adding the C binding in libc.
# Tier 3 target policy
> - A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I will do the maintenance (for now) further members of the RTEMS community will most likely join once the first steps have been done.
> - Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
> - If possible, use only letters, numbers, dashes and underscores for the name. Periods (`.`) are known to cause issues in Cargo.
The proposed triple is `armv7-rtems-eabihf`
> - Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the `tidy` tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, `rustc` built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are _not_ limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
The tools consists of the cross-compiler toolchain (gcc-based). The RTEMS kernel (BSD license) and parts of the driver stack of FreeBSD (BSD license). All tools are FOSS and publicly available here: https://gitlab.rtems.org/rtems
There are also no new features or dependencies introduced to the Rust code.
> - Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
N/A to me. I am not a reviewer nor Rust team member.
> - Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (`core` for most targets, `alloc` for targets that can support dynamic memory allocation, `std` for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
`core` and `std` compile. Some advanced features of the `std` lib might not work yet. However, the goal of this tier 3 target it to make it easier for other people to build and run test applications to better identify the unsupported features and work towards enabling them.
> - The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Building is described in platform support doc. Running simple unit tests works. Running the test suite of the stdlib is currently not that easy. Trying to work towards that after the this target has been added to the nightly.
> - Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via ````@`)``` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
Understood.
> - Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Ok
> - Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> - In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I think, I didn't add any breaking changes for any existing targets (see the comment regarding features above).
> - Tier 3 targets must be able to produce assembly using at least one of rustc's supported backends from any host target.
Can produce assembly code via the llvm backend (tested on Linux).
>
> If a tier 3 target stops meeting these requirements, or the target maintainers no longer have interest or time, or the target shows no signs of activity and has not built for some time, or removing the target would improve the quality of the Rust codebase, we may post a PR to remove it; any such PR will be CCed to the target maintainers (and potentially other people who have previously worked on the target), to check potential interest in improving the situation.GIAt this tier, the Rust project provides no official support for a target, so we place minimal requirements on the introduction of targets.
Understood.
r? compiler-team
Add missing read_buf stub for x86_64-unknown-l4re-uclibc
Before this PR, `x check library/std --target x86_64-unknown-l4re-uclibc` will fail with
```
error[E0599]: no method named `read_buf` found for struct `Socket` in the current scope
--> std/src/os/unix/net/stream.rs:598:16
|
598 | self.0.read_buf(buf)
| ^^^^^^^^
|
::: std/src/sys/pal/unix/l4re.rs:23:5
|
23 | pub struct Socket(FileDesc);
| ----------------- method `read_buf` not found for this struct
|
= help: items from traits can only be used if the trait is implemented and in scope
```
This target doesn't have a maintainer to cc.
Move the Windows remove_dir_all impl into a module and make it more race resistant
This attempts to make the Windows implementation of `remove_dir_all` easier to understand and work with by separating out different concerns into their own functions. The code is mostly the same as before just moved around. There are some changes to make it more robust against races (e.g. two calls to `remove_dir_all` running concurrently). The module level comment explains the issue.
try-job: x86_64-msvc
try-job: i686-msvc
Fix compile error in solid's remove_dir_all
Before this PR, `x check library/std --target=aarch64-kmc-solid_asp3` will fail with:
```
error[E0382]: use of partially moved value: `result`
--> std/src/sys/pal/solid/fs.rs:544:20
|
541 | if let Err(err) = result
| --- value partially moved here
...
544 | return result;
| ^^^^^^ value used here after partial move
|
= note: partial move occurs because value has type `io::error::Error`, which does not implement the `Copy` trait
help: borrow this binding in the pattern to avoid moving the value
|
541 | if let Err(ref err) = result
| +++
```
cc `@kawadakk` I think this will clear up https://solid-rs.github.io/toolstate/ :)
Rollup of 9 pull requests
Successful merges:
- #127474 (doc: Make block of inline Deref methods foldable)
- #129678 (Deny imports of `rustc_type_ir::inherent` outside of type ir + new trait solver)
- #129738 (`rustc_mir_transform` cleanups)
- #129793 (add extra linebreaks so rustdoc can identify the first sentence)
- #129804 (Fixed some typos in the standard library documentation/comments)
- #129837 (Actually parse stdout json, instead of using hacky contains logic.)
- #129842 (Fix LLVM ABI NAME for riscv64imac-unknown-nuttx-elf)
- #129843 (Mark myself as on vacation for triagebot)
- #129858 (Replace walk with visit so we dont skip outermost expr kind in def collector)
Failed merges:
- #129777 (Add `unreachable_pub`, round 4)
- #129868 (Remove kobzol vacation status)
r? `@ghost`
`@rustbot` modify labels: rollup
Apply size optimizations to panic machinery and some cold functions
* std dependencies gimli and addr2line are now built with opt-level=s
* various panic-related methods and `#[cold]` methods are now marked `#[optimize(size)]`
Panics should be cold enough that it doesn't make sense to optimize them for speed. The only tradeoff here is if someone does a lot of backtrace captures (without panics) and printing then the opt-level change might impact their perf.
Seems to be the first use of the optimize attribute. Tracking issue #54882
add `aarch64_unknown_nto_qnx700` target - QNX 7.0 support for aarch64le
This backports the QNX 7.1 aarch64 implementation to 7.0.
* [x] required `-lregex` disabled, see https://github.com/rust-lang/libc/pull/3775 (released in libc 0.2.156)
* [x] uses `libgcc.a` instead of `libgcc_s.so` (7.0 used ancient GCC 5.4 which didn't have gcc_s)
* [x] a fix in `backtrace` crate to support stack traces https://github.com/rust-lang/backtrace-rs/pull/648
This PR bumps libc dependency to 0.2.158
CC: to the folks who did the [initial implementation](https://doc.rust-lang.org/rustc/platform-support/nto-qnx.html): `@flba-eb,` `@gh-tr,` `@jonathanpallant,` `@japaric`
# Compile target
```bash
# Configure qcc build environment
source _path_/_to_/qnx7.0/qnxsdp-env.sh
# Tell rust to use qcc when building QNX 7.0 targets
export build_env='
CC_aarch64-unknown-nto-qnx700=qcc
CFLAGS_aarch64-unknown-nto-qnx700=-Vgcc_ntoaarch64le_cxx
CXX_aarch64-unknown-nto-qnx700=qcc
AR_aarch64_unknown_nto_qnx700=ntoaarch64-ar'
# Build rust compiler, libs, and the remote test server
env $build_env ./x.py build \
--target x86_64-unknown-linux-gnu,aarch64-unknown-nto-qnx700 \
rustc library/core library/alloc library/std src/tools/remote-test-server
rustup toolchain link stage1 build/host/stage1
```
# Compile "hello world"
```bash
source _path_/_to_/qnx7.0/qnxsdp-env.sh
cargo new hello_world
cd hello_world
cargo +stage1 build --release --target aarch64-unknown-nto-qnx700
```
# Configure a remote for testing
Do this from a new shell - we will need to run more commands in the previous one. I ran into these two issues, and found some workarounds.
* Temporary dir might not work properly
* Default `remote-test-server` has issues binding to an address
```
# ./remote-test-server
starting test server
thread 'main' panicked at src/tools/remote-test-server/src/main.rs:175:29:
called `Result::unwrap()` on an `Err` value: Os { code: 249, kind: AddrNotAvailable, message: "Can't assign requested address" }
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
```
Specifying `--bind` param actually fixes that, and so does setting `TMPDIR` properly.
```bash
# Copy remote-test-server to remote device. You may need to use sftp instead.
# ATTENTION: Note that the path is different from the one in the remote testing documentation for some reason
scp ./build/x86_64-unknown-linux-gnu/stage1-tools-bin/remote-test-server qnxdevice:/path/
# Run ssh with port forwarding - so that rust tester can connect to the local port instead
ssh -L 12345:127.0.0.1:12345 qnxdevice
# on the device, run
rm -rf tmp && mkdir -p tmp && TMPDIR=$PWD/tmp ./remote-test-server --bind 0.0.0.0:12345
```
# Run test suit
Assume all previous environment variables are still set, or re-init them
```bash
export TEST_DEVICE_ADDR="localhost:12345"
# tidy needs to be skipped due to using un-published libc dependency
export exclude_tests='
--exclude src/bootstrap
--exclude src/tools/error_index_generator
--exclude src/tools/linkchecker
--exclude src/tools/tidy
--exclude tests/ui-fulldeps
--exclude rustc
--exclude rustdoc
--exclude tests/run-make-fulldeps'
env $build_env ./x.py test $exclude_tests --stage 1 --target aarch64-unknown-nto-qnx700
```
try-job: dist-x86_64-msvc
wasi: Fix sleeping for `Duration::MAX`
This commit fixes an assert in the WASI-specific implementation of thread sleep to ensure that sleeping for a very large period of time blocks instead of panicking. This can come up when testing programs that sleep "forever", for example.
I'll note that I haven't included a test for this since it's sort of difficult to test. I've tested this locally though that long sleeps do indeed block and short sleeps still only sleep for a short amount of time.
This commit fixes an assert in the WASI-specific implementation of
thread sleep to ensure that sleeping for a very large period of time
blocks instead of panicking. This can come up when testing programs that
sleep "forever", for example.
copysign with sign being a NaN can have non-portable results
Follow-up to https://github.com/rust-lang/rust/pull/129559.
Cc ```@tgross35``` ```@beetrees```
There's no portable variant we can recommend instead here, is there? Something with a semantics like "if `sign` is a NaN, then return `self` unaltered, otherwise return `self` with the sign changed to that of `sign`"?
Clean up cfg-gating of ProcessPrng extern
This removes a bit of duplication and is consistent with how `api-ms-win-core-synch-l1-2-0` externs are imported.
rustc_target: Add various aarch64 features
Add various aarch64 features already supported by LLVM and Linux.
Additionally include some comment fixes to ensure consistency of feature names with the Arm ARM.
Compiler support for features added to stdarch by https://github.com/rust-lang/stdarch/pull/1614.
Tracking issue for unstable aarch64 features is https://github.com/rust-lang/rust/issues/127764.
List of added features:
- FEAT_CSSC
- FEAT_ECV
- FEAT_FAMINMAX
- FEAT_FLAGM2
- FEAT_FP8
- FEAT_FP8DOT2
- FEAT_FP8DOT4
- FEAT_FP8FMA
- FEAT_HBC
- FEAT_LSE128
- FEAT_LSE2
- FEAT_LUT
- FEAT_MOPS
- FEAT_LRCPC3
- FEAT_SVE_B16B16
- FEAT_SVE2p1
- FEAT_WFxT
- FEAT_SME
- FEAT_SME_F16F16
- FEAT_SME_F64F64
- FEAT_SME_F8F16
- FEAT_SME_F8F32
- FEAT_SME_FA64
- FEAT_SME_I16I64
- FEAT_SME_LUTv2
- FEAT_SME2
- FEAT_SME2p1
- FEAT_SSVE_FP8DOT2
- FEAT_SSVE_FP8DOT4
- FEAT_SSVE_FP8FMA
FEAT_FPMR is added in the first commit and then removed in a separate one to highlight it being removed from upstream LLVM 19. The intention is for it to be detectable at runtime through stdarch but not have a corresponding Rust compile-time feature.
A partial stabilization that only affects:
- AllocType<T>::new_uninit
- AllocType<T>::assume_init
- AllocType<[T]>::new_uninit_slice
- AllocType<[T]>::assume_init
where "AllocType" is Box, Rc, or Arc
exit: explain our expectations for the exit handlers registered in a Rust program
This documents the position of ``@Amanieu`` and others in https://github.com/rust-lang/rust/issues/126600: a library with an atexit handler that destroys state that other threads could still be working on is buggy. We do not consider it acceptable for a library to say "you must call the following cleanup function before exiting from `main` or calling `exit`". I don't know if this is established ``@rust-lang/libs-api`` consensus so I presume this will have to go through FCP.
Given that Rust supports concurrency, I don't think there is any way to write a sound Rust wrapper around a library that has such a required cleanup function: even if we made `exit` unsafe, and the Rust wrapper used the scope-with-callback approach to ensure it can run cleanup code before returning from the wrapper (like `thread::scope`), one could still call this wrapper in a second thread and then return from `main` while the wrapper runs. Making this sound would require `std` to provide a way to "block" returning from `main`, so that while the wrapper runs returning from `main` waits until the wrapper is done... that just doesn't seem feasible.
The `exit` docs do not seem like the best place to document this, but I also couldn't think of a better one.
Add SME aarch64 features already supported by LLVM and Linux.
This commit adds compiler support for the following features:
- FEAT_SME
- FEAT_SME_F16F16
- FEAT_SME_F64F64
- FEAT_SME_F8F16
- FEAT_SME_F8F32
- FEAT_SME_FA64
- FEAT_SME_I16I64
- FEAT_SME_LUTv2
- FEAT_SME2
- FEAT_SME2p1
- FEAT_SSVE_FP8DOT2
- FEAT_SSVE_FP8DOT4
- FEAT_SSVE_FP8FMA
Add various aarch64 features already supported by LLVM and Linux.
The features are marked as unstable using a newly added symbol, i.e.
aarch64_unstable_target_feature.
Additionally include some comment fixes to ensure consistency of
feature names with the Arm ARM and support for architecture version
target features up to v9.5a.
This commit adds compiler support for the following features:
- FEAT_CSSC
- FEAT_ECV
- FEAT_FAMINMAX
- FEAT_FLAGM2
- FEAT_FP8
- FEAT_FP8DOT2
- FEAT_FP8DOT4
- FEAT_FP8FMA
- FEAT_FPMR
- FEAT_HBC
- FEAT_LSE128
- FEAT_LSE2
- FEAT_LUT
- FEAT_MOPS
- FEAT_LRCPC3
- FEAT_SVE_B16B16
- FEAT_SVE2p1
- FEAT_WFxT