Clairify `ast::PatKind::Struct` presese of `..` by using an enum instead of a bool
The bool is mainly used for when a `..` is present, but it is also set on recovery to avoid errors. The doc comment not describes both of these cases.
See cee794ee98/compiler/rustc_parse/src/parser/pat.rs (L890-L897) for the only place this is constructed.
r? ``@compiler-errors``
Lots of vectors of messages called `message` or `msg`. This commit
pluralizes them.
Note that `emit_message_default` and `emit_messages_default` both
already existed, and both process a vector, so I renamed the former
`emit_messages_default_inner` because it's called by the latter.
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
Refactor AST trait bound modifiers
Instead of having two types to represent trait bound modifiers in the parser / the AST (`parser::ty::BoundModifiers` & `ast::TraitBoundModifier`), only to map one to the other later, just use `parser::ty::BoundModifiers` (moved & renamed to `ast::TraitBoundModifiers`).
The struct type is more extensible and easier to deal with (see [here](https://github.com/rust-lang/rust/pull/119099/files#r1430749981) and [here](https://github.com/rust-lang/rust/pull/119099/files#r1430752116) for context) since it more closely models what it represents: A compound of two kinds of modifiers, constness and polarity. Modeling this as an enum (the now removed `ast::TraitBoundModifier`) meant one had to add a new variant per *combination* of modifier kind, which simply isn't scalable and which lead to a lot of explicit non-DRY matches.
NB: `hir::TraitBoundModifier` being an enum is fine since HIR doesn't need to worry representing invalid modifier kind combinations as those get rejected during AST validation thereby immensely cutting down the number of possibilities.
This commit replaces this pattern:
```
err.into_diagnostic(dcx)
```
with this pattern:
```
dcx.create_err(err)
```
in a lot of places.
It's a little shorter, makes the error level explicit, avoids some
`IntoDiagnostic` imports, and is a necessary prerequisite for the next
commit which will add a `level` arg to `into_diagnostic`.
This requires adding `track_caller` on `create_err` to avoid mucking up
the output of `tests/ui/track-diagnostics/track4.rs`. It probably should
have been there already.
fix: Overlapping spans in delimited meta-vars
Closes#118786
Delimited meta-vars inside of MBE's spans were set to have the same opening and closing position resulting in an ICE when debug assertions were enabled and an error was present in the templated code.
This ensures that the spans do not overlap, whilst still having the spans point at the usage of the meta-var inside the macro definition.
It includes a regression test.
🖤
Currently, `emit_diagnostic` takes `&mut self`.
This commit changes it so `emit_diagnostic` takes `self` and the new
`emit_diagnostic_without_consuming` function takes `&mut self`.
I find the distinction useful. The former case is much more common, and
avoids a bunch of `mut` and `&mut` occurrences. We can also restrict the
latter with `pub(crate)` which is nice.
[`RFC 3086`] Attempt to try to resolve blocking concerns
Implements what is described at https://github.com/rust-lang/rust/issues/83527#issuecomment-1744822345 to hopefully make some progress.
It is unknown if such approach is or isn't desired due to the lack of further feedback, as such, it is probably best to nominate this PR to the official entities.
`@rustbot` labels +I-compiler-nominated
Remove edition umbrella features.
In the 2018 edition, there was an "umbrella" feature `#[feature(rust_2018_preview)]` which was used to enable several other features at once. This umbrella mechanism was not used in the 2021 edition and likely will not be used in 2024 either. During 2018 users reported that setting the feature was awkward, especially since they already needed to opt-in via the edition mechanism.
This PR removes this mechanism because I believe it will not be used (and will clean up and simplify the code). I believe that there are better ways to handle features and editions. In short:
- For highly experimental features, that may or may not be involved in an edition, they can implement regular feature gates like `tcx.features().my_feature`.
- For experimental features that *might* be involved in an edition, they should implement gates with `tcx.features().my_feature && span.at_least_rust_20xx()`. This requires the user to still specify `#![feature(my_feature)]`, to avoid disrupting testing of other edition features which are ready and have been accepted within the edition.
- For experimental features that have graduated to definitely be part of an edition, they should implement gates with `tcx.features().my_feature || span.at_least_rust_20xx()`, or just remove the feature check altogether and just check `span.at_least_rust_20xx()`.
- For relatively simple changes, they can skip the whole feature gating thing and just check `span.at_least_rust_20xx()`, and rely on the instability of the edition itself (which requires `-Zunstable-options`) to gate it.
I am working on documenting all of this in the rustc-dev-guide.
This is an extension of the previous commit. It means the output of
something like this:
```
stringify!(let a: Vec<u32> = vec![];)
```
goes from this:
```
let a: Vec<u32> = vec![] ;
```
With this PR, it now produces this string:
```
let a: Vec<u32> = vec![];
```
`tokenstream::Spacing` appears on all `TokenTree::Token` instances,
both punct and non-punct. Its current usage:
- `Joint` means "can join with the next token *and* that token is a
punct".
- `Alone` means "cannot join with the next token *or* can join with the
next token but that token is not a punct".
The fact that `Alone` is used for two different cases is awkward.
This commit augments `tokenstream::Spacing` with a new variant
`JointHidden`, resulting in:
- `Joint` means "can join with the next token *and* that token is a
punct".
- `JointHidden` means "can join with the next token *and* that token is a
not a punct".
- `Alone` means "cannot join with the next token".
This *drastically* improves the output of `print_tts`. For example,
this:
```
stringify!(let a: Vec<u32> = vec![];)
```
currently produces this string:
```
let a : Vec < u32 > = vec! [] ;
```
With this PR, it now produces this string:
```
let a: Vec<u32> = vec![] ;
```
(The space after the `]` is because `TokenTree::Delimited` currently
doesn't have spacing information. The subsequent commit fixes this.)
The new `print_tts` doesn't replicate original code perfectly. E.g.
multiple space characters will be condensed into a single space
character. But it's much improved.
`print_tts` still produces the old, uglier output for code produced by
proc macros. Because we have to translate the generated code from
`proc_macro::Spacing` to the more expressive `token::Spacing`, which
results in too much `proc_macro::Along` usage and no
`proc_macro::JointHidden` usage. So `space_between` still exists and
is used by `print_tts` in conjunction with the `Spacing` field.
This change will also help with the removal of `Token::Interpolated`.
Currently interpolated tokens are pretty-printed nicely via AST pretty
printing. `Token::Interpolated` removal will mean they get printed with
`print_tts`. Without this change, that would result in much uglier
output for code produced by decl macro expansions. With this change, AST
pretty printing and `print_tts` produce similar results.
The commit also tweaks the comments on `proc_macro::Spacing`. In
particular, it refers to "compound tokens" rather than "multi-char
operators" because lifetimes aren't operators.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Introduce support for `async gen` blocks
I'm delighted to demonstrate that `async gen` block are not very difficult to support. They're simply coroutines that yield `Poll<Option<T>>` and return `()`.
**This PR is WIP and in draft mode for now** -- I'm mostly putting it up to show folks that it's possible. This PR needs a lang-team experiment associated with it or possible an RFC, since I don't think it falls under the jurisdiction of the `gen` RFC that was recently authored by oli (https://github.com/rust-lang/rfcs/pull/3513, https://github.com/rust-lang/rust/issues/117078).
### Technical note on the pre-generator-transform yield type:
The reason that the underlying coroutines yield `Poll<Option<T>>` and not `Poll<T>` (which would make more sense, IMO, for the pre-transformed coroutine), is because the `TransformVisitor` that is used to turn coroutines into built-in state machine functions would have to destructure and reconstruct the latter into the former, which requires at least inserting a new basic block (for a `switchInt` terminator, to match on the `Poll` discriminant).
This does mean that the desugaring (at the `rustc_ast_lowering` level) of `async gen` blocks is a bit more involved. However, since we already need to intercept both `.await` and `yield` operators, I don't consider it much of a technical burden.
r? `@ghost`
never_patterns: Parse match arms with no body
Never patterns are meant to signal unreachable cases, and thus don't take bodies:
```rust
let ptr: *const Option<!> = ...;
match *ptr {
None => { foo(); }
Some(!),
}
```
This PR makes rustc accept the above, and enforces that an arm has a body xor is a never pattern. This affects parsing of match arms even with the feature off, so this is delicate. (Plus this is my first non-trivial change to the parser).
~~The last commit is optional; it introduces a bit of churn to allow the new suggestions to be machine-applicable. There may be a better solution? I'm not sure.~~ EDIT: I removed that commit
r? `@compiler-errors`
Because a macro invocation can expand to a never pattern, we can't rule
out a `arm!(),` arm at parse time. Instead we detect that case at
expansion time, if the macro tries to output a pattern followed by `=>`.
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.