Commit Graph

104 Commits

Author SHA1 Message Date
Georg Semmler
d013b5a462
Stabilize the #[diagnostic] namespace and #[diagnostic::on_unimplemented] attribute
This PR stabilizes the `#[diagnostic]` attribute namespace and a minimal
option of the `#[diagnostic::on_unimplemented]` attribute.

The `#[diagnostic]` attribute namespace is meant to provide a home for
attributes that allow users to influence error messages emitted by the
compiler. The compiler is not guaranteed to use any of this hints,
however it should accept any (non-)existing attribute in this namespace
and potentially emit lint-warnings for unused attributes and options.
This is meant to allow discarding certain attributes/options in the
future to allow fundamental changes to the compiler without the need to
keep then non-meaningful options working.

The `#[diagnostic::on_unimplemented]` attribute is allowed to appear
on a trait definition. This allows crate authors to hint the compiler
to emit a specific error message if a certain trait is not implemented.
For the `#[diagnostic::on_unimplemented]` attribute the following
options are implemented:

* `message` which provides the text for the top level error message
* `label` which provides the text for the label shown inline in the
broken code in the error message
* `note` which provides additional notes.

The `note` option can appear several times, which results in several
note messages being emitted. If any of the other options appears several
times the first occurrence of the relevant option specifies the actually
used value. Any other occurrence generates an lint warning. For any
other non-existing option a lint-warning is generated.

All three options accept a text as argument. This text is allowed to
contain format parameters referring to generic argument or `Self` by
name via the `{Self}` or `{NameOfGenericArgument}` syntax. For any
non-existing argument a lint warning is generated.

Tracking issue: #111996
2024-02-27 08:50:56 +01:00
Chris Denton
93ec0e6299
Stabilize cfg_target_abi 2024-02-24 17:52:03 -03:00
Mark Rousskov
8043821b3a Bump version placeholders 2024-02-08 07:43:38 -05:00
Oli Scherer
9a20cf1697 Revert "Auto merge of #118133 - Urgau:stabilize_trait_upcasting, r=WaffleLapkin"
This reverts commit 6d2b84b3ed, reversing
changes made to 73bc12199e.
2024-01-22 14:24:31 +00:00
Eduardo Sánchez Muñoz
c03808f53b Set c_str_literals stabilization version back to CURRENT_RUSTC_VERSION
`c_str_literals`'s stabilization has been delayed to 1.77 (https://github.com/rust-lang/rust/pull/119528).
2024-01-11 20:46:02 +01:00
Pietro Albini
c00486c9bb
update version placeholders 2023-12-22 11:01:42 +01:00
Eric Huss
f481596ee4 Remove edition umbrella features. 2023-12-10 13:03:28 -08:00
bors
63d16b5a98 Auto merge of #117472 - jmillikin:stable-c-str-literals, r=Nilstrieb
Stabilize C string literals

RFC: https://rust-lang.github.io/rfcs/3348-c-str-literal.html

Tracking issue: https://github.com/rust-lang/rust/issues/105723

Documentation PR (reference manual): https://github.com/rust-lang/reference/pull/1423

# Stabilization report

Stabilizes C string and raw C string literals (`c"..."` and `cr#"..."#`), which are expressions of type [`&CStr`](https://doc.rust-lang.org/stable/core/ffi/struct.CStr.html). Both new literals require Rust edition 2021 or later.

```rust
const HELLO: &core::ffi::CStr = c"Hello, world!";
```

C strings may contain any byte other than `NUL` (`b'\x00'`), and their in-memory representation is guaranteed to end with `NUL`.

## Implementation

Originally implemented by PR https://github.com/rust-lang/rust/pull/108801, which was reverted due to unintentional changes to lexer behavior in Rust editions < 2021.

The current implementation landed in PR https://github.com/rust-lang/rust/pull/113476, which restricts C string literals to Rust edition >= 2021.

## Resolutions to open questions from the RFC

* Adding C character literals (`c'.'`) of type `c_char` is not part of this feature.
  * Support for `c"..."` literals does not prevent `c'.'` literals from being added in the future.
* C string literals should not be blocked on making `&CStr` a thin pointer.
  * It's possible to declare constant expressions of type `&'static CStr` in stable Rust (as of v1.59), so C string literals are not adding additional coupling on the internal representation of `CStr`.
* The unstable `concat_bytes!` macro should not accept `c"..."` literals.
  * C strings have two equally valid `&[u8]` representations (with or without terminal `NUL`), so allowing them to be used in `concat_bytes!` would be ambiguous.
* Adding a type to represent C strings containing valid UTF-8 is not part of this feature.
  * Support for a hypothetical `&Utf8CStr` may be explored in the future, should such a type be added to Rust.
2023-12-01 13:33:55 +00:00
Urgau
4c2d6de70e Stabilize RFC3324 dyn upcasting coercion
Aka trait_upcasting feature.

And also adjust the `deref_into_dyn_supertrait` lint.
2023-11-22 13:56:36 +01:00
Mark Rousskov
efe54e24aa Substitute version placeholders 2023-11-15 19:40:51 -05:00
John Millikin
0f41bc21b9 Stabilize C string literals 2023-11-01 09:16:34 +09:00
Nicholas Nethercote
d284c8a2d7 Rename ACTIVE_FEATURES as UNSTABLE_FEATURES.
It's a better name, and lets "active features" refer to the features
that are active in a particular program, due to being declared or
enabled by the edition.

The commit also renames `Features::enabled` as `Features::active` to
match this; I changed my mind and have decided that "active" is a little
better thatn "enabled" for this, particularly because a number of
pre-existing comments use "active" in this way.

Finally, the commit renames `Status::Stable` as `Status::Accepted`, to
match `ACCEPTED_FEATURES`.
2023-10-16 08:17:23 +11:00
Nicholas Nethercote
41b6899487 Remove rustc_feature::State.
`State` is used to distinguish active vs accepted vs removed features.
However, these can also be distinguished by their location, in
`ACTIVE_FEATURES`, `ACCEPTED_FEATURES`, and `REMOVED_FEATURES`.

So this commit removes `State` and moves the internals of its variants
next to the `Feature` in each element of `*_FEATURES`, introducing new
types `ActiveFeature` and `RemovedFeature`. (There is no need for
`AcceptedFeature` because `State::Accepted` had no fields.)

This is a tighter type representation, avoids the need for some runtime
checks, and makes the code a bit shorter.
2023-10-16 08:15:30 +11:00
bors
481d45abec Auto merge of #115822 - compiler-errors:stabilize-rpitit, r=jackh726
Stabilize `async fn` and return-position `impl Trait` in trait

# Stabilization report

This report proposes the stabilization of `#![feature(return_position_impl_trait_in_trait)]` ([RPITIT][RFC 3425]) and `#![feature(async_fn_in_trait)]` ([AFIT][RFC 3185]). These are both long awaited features that increase the expressiveness of the Rust language and trait system.

Closes #91611

[RFC 3185]: https://rust-lang.github.io/rfcs/3185-static-async-fn-in-trait.html
[RFC 3425]: https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html

## Updates from thread

The thread has covered two major concerns:

* [Given that we don't have RTN, what should we stabilize?](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731149475) -- proposed resolution is [adding a lint](https://github.com/rust-lang/rust/pull/115822#issuecomment-1728354622) and [careful messaging](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731136169)
* [Interaction between outlives bounds and capture semantics](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731153952) -- This is fixable in a forwards-compatible way via #116040, and also eventually via ATPIT.

## Stabilization Summary

This stabilization allows the following examples to work.

### Example of return-position `impl Trait` in trait definition

```rust
trait Bar {
    fn bar(self) -> impl Send;
}
```

This declares a trait method that returns *some* type that implements `Send`.  It's similar to writing the following using an associated type, except that the associated type is anonymous.

```rust
trait Bar {
    type _0: Send;
    fn bar(self) -> Self::_0;
}
```

### Example of return-position `impl Trait` in trait implementation

```rust
impl Bar for () {
    fn bar(self) -> impl Send {}
}
```

This defines a method implementation that returns an opaque type, just like [RPIT][RFC 1522] does, except that all in-scope lifetimes are captured in the opaque type (as is already true for `async fn` and as is expected to be true for RPIT in Rust Edition 2024), as described below.

[RFC 1522]: https://rust-lang.github.io/rfcs/1522-conservative-impl-trait.html

### Example of `async fn` in trait

```rust
trait Bar {
    async fn bar(self);
}

impl Bar for () {
    async fn bar(self) {}
}
```

This declares a trait method that returns *some* [`Future`](https://doc.rust-lang.org/core/future/trait.Future.html) and a corresponding method implementation.  This is equivalent to writing the following using RPITIT.

```rust
use core::future::Future;

trait Bar {
    fn bar(self) -> impl Future<Output = ()>;
}

impl Bar for () {
    fn bar(self) -> impl Future<Output = ()> { async {} }
}
```

The desirability of this desugaring being available is part of why RPITIT and AFIT are being proposed for stabilization at the same time.

## Motivation

Long ago, Rust added [RPIT][RFC 1522] and [`async`/`await`][RFC 2394].  These are major features that are widely used in the ecosystem.  However, until now, these feature could not be used in *traits* and trait implementations.  This left traits as a kind of second-class citizen of the language.  This stabilization fixes that.

[RFC 2394]: https://rust-lang.github.io/rfcs/2394-async_await.html

### `async fn` in trait

Async/await allows users to write asynchronous code much easier than they could before. However, it doesn't play nice with other core language features that make Rust the great language it is, like traits. Support for `async fn` in traits has been long anticipated and was not added before due to limitations in the compiler that have now been lifted.

`async fn` in traits will unblock a lot of work in the ecosystem and the standard library. It is not currently possible to write a trait that is implemented using `async fn`. The workarounds that exist are undesirable because they require allocation and dynamic dispatch, and any trait that uses them will become obsolete once native `async fn` in trait is stabilized.

We also have ample evidence that there is demand for this feature from the [`async-trait` crate][async-trait], which emulates the feature using dynamic dispatch. The async-trait crate is currently the #5 async crate on crates.io ranked by recent downloads, receiving over 78M all-time downloads. According to a [recent analysis][async-trait-analysis], 4% of all crates use the `#[async_trait]` macro it provides, representing 7% of all function and method signatures in trait definitions on crates.io. We think this is a *lower bound* on demand for the feature, because users are unlikely to use `#[async_trait]` on public traits on crates.io for the reasons already given.

[async-trait]: https://crates.io/crates/async-trait
[async-trait-analysis]: https://rust-lang.zulipchat.com/#narrow/stream/315482-t-compiler.2Fetc.2Fopaque-types/topic/RPIT.20capture.20rules.20.28capturing.20everything.29/near/389496292

### Return-position `impl Trait` in trait

`async fn` always desugars to a function that returns `impl Future`.

```rust!
async fn foo() -> i32 { 100 }

// Equivalent to:
fn foo() -> impl Future<Output = i32> { async { 100 } }
```

All `async fn`s today can be rewritten this way. This is useful because it allows adding behavior that runs at the time of the function call, before the first `.await` on the returned future.

In the spirit of supporting the same set of features on `async fn` in traits that we do outside of traits, it makes sense to stabilize this as well. As described by the [RPITIT RFC][rpitit-rfc], this includes the ability to mix and match the equivalent forms in traits and their corresponding impls:

```rust!
trait Foo {
    async fn foo(self) -> i32;
}

// Can be implemented as:
impl Foo for MyType {
    fn foo(self) -> impl Future<Output = i32> {
        async { 100 }
    }
}
```

Return-position `impl Trait` in trait is useful for cases beyond async, just as regular RPIT is. As a simple example, the RFC showed an alternative way of writing the `IntoIterator` trait with one fewer associated type.

```rust!
trait NewIntoIterator {
    type Item;
    fn new_into_iter(self) -> impl Iterator<Item = Self::Item>;
}

impl<T> NewIntoIterator for Vec<T> {
    type Item = T;
    fn new_into_iter(self) -> impl Iterator<Item = T> {
        self.into_iter()
    }
}
```

[rpitit-rfc]: https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html

## Major design decisions

This section describes the major design decisions that were reached after the RFC was accepted:

- EDIT: Lint against async fn in trait definitions

    - Until the [send bound problem](https://smallcultfollowing.com/babysteps/blog/2023/02/01/async-trait-send-bounds-part-1-intro/) is resolved, the use of `async fn` in trait definitions could lead to a bad experience for people using work-stealing executors (by far the most popular choice). However, there are significant use cases for which the current support is all that is needed (single-threaded executors, such as those used in embedded use cases, as well as thread-per-core setups). We are prioritizing serving users well over protecting people from misuse, and therefore, we opt to stabilize the full range of functionality; however, to help steer people correctly, we are will issue a warning on the use of `async fn` in trait definitions that advises users about the limitations. (See [this summary comment](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731149475) for the details of the concern, and [this comment](https://github.com/rust-lang/rust/pull/115822#issuecomment-1728354622) for more details about the reasoning that led to this conclusion.)

- Capture rules:

    - The RFC's initial capture rules for lifetimes in impls/traits were found to be imprecisely precise and to introduce various inconsistencies. After much discussion, the decision was reached to make `-> impl Trait` in traits/impls capture *all* in-scope parameters, including both lifetimes and types. This is a departure from the behavior of RPITs in other contexts; an RFC is currently being authored to change the behavior of RPITs in other contexts in a future edition.

    - Major discussion links:

        - [Lang team design meeting from 2023-07-26](https://hackmd.io/sFaSIMJOQcuwCdnUvCxtuQ?view)

- Refinement:

    - The [refinement RFC] initially proposed that impl signatures that are more specific than their trait are not allowed unless the `#[refine]` attribute was included, but left it as an open question how to implement this. The stabilized proposal is that it is not a hard error to omit `#[refine]`, but there is a lint which fires if the impl's return type is more precise than the trait. This greatly simplified the desugaring and implementation while still achieving the original goal of ensuring that users do not accidentally commit to a more specific return type than they intended.

    - Major discussion links:

        - [Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/.60.23.5Brefine.5D.60.20as.20a.20lint)

[refinement RFC]: https://rust-lang.github.io/rfcs/3245-refined-impls.html

## What is stabilized

### Async functions in traits and trait implementations

* `async fn` are now supported in traits and trait implementations.
* Associated functions in traits that are `async` may have default bodies.

### Return-position impl trait in traits and trait implementations

* Return-position `impl Trait`s are now supported in traits and trait implementations.
    * Return-position `impl Trait` in implementations are treated like regular return-position `impl Trait`s, and therefore behave according to the same inference rules for hidden type inference and well-formedness.
* Associated functions in traits that name return-position `impl Trait`s may have default bodies.
* Implementations may provide either concrete types or `impl Trait` for each corresponding `impl Trait` in the trait method signature.

For a detailed exploration of the technical implementation of return-position `impl Trait` in traits, see [the dev guide](https://rustc-dev-guide.rust-lang.org/return-position-impl-trait-in-trait.html).

### Mixing `async fn` in trait and return-position `impl Trait` in trait

A trait function declaration that is `async fn ..() -> T` may be satisfied by an implementation function that returns `impl Future<Output = T>`, or vice versa.

```rust
trait Async {
    async fn hello();
}

impl Async for () {
    fn hello() -> impl Future<Output = ()> {
        async {}
    }
}

trait RPIT {
    fn hello() -> impl Future<Output = String>;
}

impl RPIT for () {
    async fn hello() -> String {
        "hello".to_string()
    }
}
```

### Return-position `impl Trait` in traits and trait implementations capture all in-scope lifetimes

Described above in "major design decisions".

### Return-position `impl Trait` in traits are "always revealing"

When a trait uses `-> impl Trait` in return position, it logically desugars to an associated type that represents the return (the actual implementation in the compiler is different, as described below). The value of this associated type is determined by the actual return type written in the impl; if the impl also uses `-> impl Trait` as the return type, then the value of the associated type is an opaque type scoped to the impl method (similar to what you would get when calling an inherent function returning `-> impl Trait`). As with any associated type, the value of this special associated type can be revealed by the compiler if the compiler can figure out what impl is being used.

For example, given this trait:

```rust
trait AsDebug {
    fn as_debug(&self) -> impl Debug;
}
```

A function working with the trait generically is only able to see that the return value is `Debug`:

```rust
fn foo<T: AsDebug>(t: &T) {
    let u = t.as_debug();
    println!("{}", u); // ERROR: `u` is not known to implement `Display`
}
```

But if a function calls `as_debug` on a known type (say, `u32`), it may be able to resolve the return type more specifically, if that implementation specifies a concrete type as well:

```rust
impl AsDebug for u32 {
    fn as_debug(&self) -> u32 {
        *self
    }
}

fn foo(t: &u32) {
    let u: u32 = t.as_debug(); // OK!
    println!("{}",  t.as_debug()); // ALSO OK (since `u32: Display`).
}
```

The return type used in the impl therefore represents a **semver binding** promise from the impl author that the return type of `<u32 as AsDebug>::as_debug` will not change. This could come as a surprise to users, who might expect that they are free to change the return type to any other type that implements `Debug`. To address this, we include a [`refining_impl_trait` lint](https://github.com/rust-lang/rust/pull/115582) that warns if the impl uses a specific type -- the `impl AsDebug for u32` above, for example, would toggle the lint.

The lint message explains what is going on and encourages users to `allow` the lint to indicate that they meant to refine the return type:

```rust
impl AsDebug for u32 {
    #[allow(refining_impl_trait)]
    fn as_debug(&self) -> u32 {
        *self
    }
}
```

[RFC #3245](https://github.com/rust-lang/rfcs/pull/3245) proposed a new attribute, `#[refine]`, that could also be used to "opt-in" to refinements like this (and which would then silence the lint). That RFC is not currently implemented -- the `#[refine]` attribute is also expected to reveal other details from the signature and has not yet been fully implemented.

### Return-position `impl Trait` and `async fn` in traits are opted-out of object safety checks when the parent function has `Self: Sized`

```rust
trait IsObjectSafe {
    fn rpit() -> impl Sized where Self: Sized;
    async fn afit() where Self: Sized;
}
```

Traits that mention return-position `impl Trait` or `async fn` in trait when the associated function includes a `Self: Sized` bound will remain object safe. That is because the associated function that defines them will be opted-out of the vtable of the trait, and the associated types will be unnameable from any trait object.

This can alternatively be seen as a consequence of https://github.com/rust-lang/rust/pull/112319#issue-1742251747 and the desugaring of return-position `impl Trait` in traits to associated types which inherit the where-clauses of the associated function that defines them.

## What isn't stabilized (aka, potential future work)

### Dynamic dispatch

As stabilized, traits containing RPITIT and AFIT are **not dyn compatible**. This means that you cannot create `dyn Trait` objects from them and can only use static dispatch. The reason for this limitation is that dynamic dispatch support for RPITIT and AFIT is more complex than static dispatch, as described on the [async fundamentals page](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/challenges/dyn_traits.html). The primary challenge to using `dyn Trait` in today's Rust is that **`dyn Trait` today must list the values of all associated types**. This means you would have to write `dyn for<'s> Trait<Foo<'s> = XXX>` where `XXX` is the future type defined by the impl, such as `F_A`. This is not only verbose (or impossible), it also uniquely ties the `dyn Trait` to a particular impl, defeating the whole point of `dyn Trait`.

The precise design for handling dynamic dispatch is not yet determined. Top candidates include:

- [callee site selection][], in which we permit unsized return values so that the return type for an `-> impl Foo` method be can be `dyn Foo`, but then users must specify the type of wide pointer at the call-site in some fashion.

- [`dyn*`][], where we create a built-in encapsulation of a "wide pointer" and map the associated type corresponding to an RPITIT to the corresponding `dyn*` type (`dyn*` itself is not exposed to users as a type in this proposal, though that could be a future extension).

[callee site selection]: https://smallcultfollowing.com/babysteps/blog/2022/09/21/dyn-async-traits-part-9-callee-site-selection/

[`dyn*`]: https://smallcultfollowing.com/babysteps/blog/2022/03/29/dyn-can-we-make-dyn-sized/

### Where-clause bounds on return-position `impl Trait` in traits or async futures (RTN/ART)

One limitation of async fn in traits and RPITIT as stabilized is that there is no way for users to write code that adds additional bounds beyond those listed in the `-> impl Trait`. The most common example is wanting to write a generic function that requires that the future returned from an `async fn` be `Send`:

```rust
trait Greet {
    async fn greet(&self);
}

fn greet_in_parallel<G: Greet>(g: &G) {
    runtime::spawn(async move {
        g.greet().await; //~ ERROR: future returned by `greet` may not be `Send`
    })
}
```

Currently, since the associated types added for the return type are anonymous, there is no where-clause that could be added to make this code compile.

There have been various proposals for how to address this problem (e.g., [return type notation][rtn] or having an annotation to give a name to the associated type), but we leave the selection of one of those mechanisms to future work.

[rtn]: https://smallcultfollowing.com/babysteps/blog/2023/02/13/return-type-notation-send-bounds-part-2/

In the meantime, there are workarounds that one can use to address this problem, listed below.

#### Require all futures to be `Send`

For many users, the trait may only ever be used with `Send` futures, in which case one can write an explicit `impl Future + Send`:

```rust
trait Greet {
    fn greet(&self) -> impl Future<Output = ()> + Send;
}
```

The nice thing about this is that it is still compatible with using `async fn` in the trait impl. In the async working group case studies, we found that this could work for the [builder provider API](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/case-studies/builder-provider-api.html). This is also the default approach used by the `#[async_trait]` crate which, as we have noted, has seen widespread adoption.

#### Avoid generics

This problem only applies when the `Self` type is generic. If the `Self` type is known, then the precise return type from an `async fn` is revealed, and the `Send` bound can be inferred thanks to auto-trait leakage. Even in cases where generics may appear to be required, it is sometimes possible to rewrite the code to avoid them. The [socket handler refactor](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/case-studies/socket-handler.html) case study provides one such example.

### Unify capture behavior for `-> impl Trait` in inherent methods and traits

As stabilized, the capture behavior for `-> impl Trait` in a trait (whether as part of an async fn or a RPITIT) captures all types and lifetimes, whereas the existing behavior for inherent methods only captures types and lifetimes that are explicitly referenced. Capturing all lifetimes in traits was necessary to avoid various surprising inconsistencies; the expressed intent of the lang team is to extend that behavior so that we also capture all lifetimes in inherent methods, which would create more consistency and also address a common source of user confusion, but that will have to happen over the 2024 edition. The RFC is in progress. Should we opt not to accept that RFC, we can bring the capture behavior for `-> impl Trait` into alignment in other ways as part of the 2024 edition.

### `impl_trait_projections`

Orthgonal to `async_fn_in_trait` and `return_position_impl_trait_in_trait`, since it can be triggered on stable code. This will be stabilized separately in [#115659](https://github.com/rust-lang/rust/pull/115659).

<details>
If we try to write this code without `impl_trait_projections`, we will get an error:

```rust
#![feature(async_fn_in_trait)]

trait Foo {
    type Error;
    async fn foo(&mut self) -> Result<(), Self::Error>;
}

impl<T: Foo> Foo for &mut T {
    type Error = T::Error;
    async fn foo(&mut self) -> Result<(), Self::Error> {
        T::foo(self).await
    }
}
```

The error relates to the use of `Self` in a trait impl when the self type has a lifetime. It can be worked around by rewriting the impl not to use `Self`:

```rust
#![feature(async_fn_in_trait)]

trait Foo {
    type Error;
    async fn foo(&mut self) -> Result<(), Self::Error>;
}

impl<T: Foo> Foo for &mut T {
    type Error = T::Error;
    async fn foo(&mut self) -> Result<(), <&mut T as Foo>::Error> {
        T::foo(self).await
    }
}
```
</details>

## Tests

Tests are generally organized between return-position `impl Trait` and `async fn` in trait, when the distinction matters.
* RPITIT: https://github.com/rust-lang/rust/tree/master/tests/ui/impl-trait/in-trait
* AFIT: https://github.com/rust-lang/rust/tree/master/tests/ui/async-await/in-trait

## Remaining bugs and open issues

* #112047: Indirection introduced by `async fn` and return-position `impl Trait` in traits may hide cycles in opaque types, causing overflow errors that can only be discovered by monomorphization.
* #111105 - `async fn` in trait is susceptible to issues with checking auto traits on futures' generators, like regular `async`. This is a manifestation of #110338.
    * This was deemed not blocking because fixing it is forwards-compatible, and regular `async` is subject to the same issues.
* #104689: `async fn` and return-position `impl Trait` in trait requires the late-bound lifetimes in a trait and impl function signature to be equal.
    * This can be relaxed in the future with a smarter lexical region resolution algorithm.
* #102527: Nesting return-position `impl Trait` in trait deeply may result in slow compile times.
    * This has only been reported once, and can be fixed in the future.
* #108362: Inference between return types and generics of a function may have difficulties when there's an `.await`.
    * This isn't related to AFIT (https://github.com/rust-lang/rust/issues/108362#issuecomment-1717927918) -- using traits does mean that there's possibly easier ways to hit it.
* #112626: Because `async fn` and return-position `impl Trait` in traits lower to associated types, users may encounter strange behaviors when implementing circularly dependent traits.
    * This is not specific to RPITIT, and is a limitation of associated types: https://github.com/rust-lang/rust/issues/112626#issuecomment-1603405105
* **(Nightly)** #108309: `async fn` and return-position `impl Trait` in trait do not support specialization. This was deemed not blocking, since it can be fixed in the future (e.g. #108321) and specialization is a nightly feature.

#### (Nightly) Return type notation bugs

RTN is not being stabilized here, but there are some interesting outstanding bugs. None of them are blockers for AFIT/RPITIT, but I'm noting them for completeness.

<details>

* #109924 is a bug that occurs when a higher-ranked trait bound has both inference variables and associated types. This is pre-existing -- RTN just gives you a more convenient way of producing them. This should be fixed by the new trait solver.
* #109924 is a manifestation of a more general issue with `async` and auto-trait bounds: #110338. RTN does not cause this issue, just allows us to put `Send` bounds on the anonymous futures that we have in traits.
* #112569 is a bug similar to associated type bounds, where nested bounds are not implied correctly.

</details>

## Alternatives

### Do nothing

We could choose not to stabilize these features. Users that can use the `#[async_trait]` macro would continue to do so. Library maintainers would continue to avoid async functions in traits, potentially blocking the stable release of many useful crates.

### Stabilize `impl Trait` in associated type instead

AFIT and RPITIT solve the problem of returning unnameable types from trait methods. It is also possible to solve this by using another unstable feature, `impl Trait` in an associated type. Users would need to define an associated type in both the trait and trait impl:

```rust!
trait Foo {
    type Fut<'a>: Future<Output = i32> where Self: 'a;
    fn foo(&self) -> Self::Fut<'_>;
}

impl Foo for MyType {
    type Fut<'a> where Self: 'a = impl Future<Output = i32>;
    fn foo(&self) -> Self::Fut<'_> {
        async { 42 }
    }
}
```

This also has the advantage of allowing generic code to bound the associated type. However, it is substantially less ergonomic than either `async fn` or `-> impl Future`, and users still expect to be able to use those features in traits. **Even if this feature were stable, we would still want to stabilize AFIT and RPITIT.**

That said, we can have both. `impl Trait` in associated types is desireable because it can be used in existing traits with explicit associated types, among other reasons. We *should* stabilize this feature once it is ready, but that's outside the scope of this proposal.

### Use the old capture semantics for RPITIT

We could choose to make the capture rules for RPITIT consistent with the existing rules for RPIT. However, there was strong consensus in a recent [lang team meeting](https://hackmd.io/sFaSIMJOQcuwCdnUvCxtuQ?view) that we should *change* these rules, and furthermore that new features should adopt the new rules.

This is consistent with the tenet in RFC 3085 of favoring ["Uniform behavior across editions"](https://rust-lang.github.io/rfcs/3085-edition-2021.html#uniform-behavior-across-editions) when possible. It greatly reduces the complexity of the feature by not requiring us to answer, or implement, the design questions that arise out of the interaction between the current capture rules and traits. This reduction in complexity – and eventual technical debt – is exactly in line with the motivation listed in the aforementioned RFC.

### Make refinement a hard error

Refinement (`refining_impl_trait`) is only a concern for library authors, and therefore doesn't really warrant making into a deny-by-default warning or an error.

Additionally, refinement is currently checked via a lint that compares bounds in the `impl Trait`s in the trait and impl syntactically. This is good enough for a warning that can be opted-out, but not if this were a hard error, which would ideally be implemented using fully semantic, implicational logic. This was implemented (#111931), but also is an unnecessary burden on the type system for little pay-off.

## History

- Dec 7, 2021: [RFC #3185: Static async fn in traits](https://rust-lang.github.io/rfcs/3185-static-async-fn-in-trait.html) merged
- Sep 9, 2022: [Initial implementation](https://github.com/rust-lang/rust/pull/101224) of AFIT and RPITIT landed
- Jun 13, 2023: [RFC #3425: Return position `impl Trait` in traits](https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html) merged

<!--These will render pretty when pasted into github-->
Non-exhaustive list of PRs that are particularly relevant to the implementation:

- #101224
- #103491
- #104592
- #108141
- #108319
- #108672
- #112988
- #113182 (later made redundant by #114489)
- #113215
- #114489
- #115467
- #115582

Doc co-authored by `@nikomatsakis,` `@tmandry,` `@traviscross.` Thanks also to `@spastorino,` `@cjgillot` (for changes to opaque captures!), `@oli-obk` for many reviews, and many other contributors and issue-filers. Apologies if I left your name off 😺
2023-10-14 07:29:08 +00:00
Michael Goulet
59315b8a63 Stabilize AFIT and RPITIT 2023-10-13 21:01:36 +00:00
Mark Rousskov
787d32324c Bump version placeholders 2023-10-03 20:26:36 -04:00
bors
56ada88e7e Auto merge of #113301 - Be-ing:stabilize_bundle_whole-archive, r=petrochenkov
stabilize combining +bundle and +whole-archive link modifiers

Per discussion on https://github.com/rust-lang/rust/issues/108081 combining +bundle and +whole-archive already works and can be stabilized independently of other aspects of the packed_bundled_libs feature. There is no risk of regression because this was not previously allowed.

r? `@petrochenkov`
2023-09-29 15:51:48 +00:00
Michael Goulet
e4af4e5083 Stabilize impl_trait_projections 2023-09-08 03:45:36 +00:00
klensy
355ba433ee fix version for abi_thiscall to 1.73.0, which was forgotten to change when stabilized 2023-09-01 19:46:09 +03:00
Be Wilson
72e29da3ec stabilize combining +bundle and +whole-archive link modifiers
Currently, combining +bundle and +whole-archive works only with
 #![feature(packed_bundled_libs)]
This crate feature is independent of the -Zpacked-bundled-libs
command line option.

This commit stabilizes the #![feature(packed_bundled_libs)] crate
feature and implicitly enables it only when the +bundle and
+whole-archive link modifiers are combined. This allows rlib
crates to use the +whole-archive link modifier with native
libraries and have all symbols included in the linked library
to be included in downstream staticlib crates that use the rlib as
a dependency. Other cases requiring the packed_bundled_libs
behavior still require the -Zpacked-bundled-libs command line
option, which can be stabilized independently in the future.

Per discussion on https://github.com/rust-lang/rust/issues/108081
there is no risk of regression stabilizing the crate feature in
this way because the combination of +bundle,+whole-archive link
modifiers was previously not allowed.
2023-08-15 15:51:18 -05:00
Benedikt Radtke
3f3262e592 stabilize abi_thiscall 2023-08-07 14:11:03 +02:00
Mark Rousskov
4f9b394c8a Swap out CURRENT_RUSTC_VERSION to 1.71.0 2023-05-30 07:54:29 -04:00
Yuki Okushi
923a5a2ca7
Rollup merge of #109677 - dpaoliello:rawdylib, r=michaelwoerister,wesleywiser
Stabilize raw-dylib, link_ordinal, import_name_type and -Cdlltool

This stabilizes the `raw-dylib` feature (#58713) for all architectures (i.e., `x86` as it is already stable for all other architectures).

Changes:
* Permit the use of the `raw-dylib` link kind for x86, the `link_ordinal` attribute and the `import_name_type` key for the `link` attribute.
* Mark the `raw_dylib` feature as stable.
* Stabilized the `-Zdlltool` argument as `-Cdlltool`.
* Note the path to `dlltool` if invoking it failed (we don't need to do this if `dlltool` returns an error since it prints its path in the error message).
* Adds tests for `-Cdlltool`.
* Adds tests for being unable to find the dlltool executable, and dlltool failing.
* Fixes a bug where we were checking the exit code of dlltool to see if it failed, but dlltool always returns 0 (indicating success), so instead we need to check if anything was written to `stderr`.

NOTE: As previously noted (https://github.com/rust-lang/rust/pull/104218#issuecomment-1315895618) using dlltool within rustc is temporary, but this is not the first time that Rust has added a temporary tool use and argument: https://github.com/rust-lang/rust/pull/104218#issuecomment-1318720482

Big thanks to ``````@tbu-`````` for the first version of this PR (#104218)
2023-05-06 09:09:30 +09:00
Dylan DPC
f379a58bf2
Rollup merge of #108668 - gibbyfree:stabilizedebuggervisualizer, r=wesleywiser
Stabilize debugger_visualizer

This stabilizes the `debugger_visualizer` attribute (#95939).

* Marks the `debugger_visualizer` feature as `accepted`.
* Marks the `debugger_visualizer` attribute as `ungated`.
* Deletes feature gate test, removes feature gate from other tests.

Closes #95939
2023-05-02 11:44:51 +05:30
Pietro Albini
4e04da6183 replace version placeholders 2023-04-28 08:47:55 -07:00
Daniel Paoliello
1ece1ea48c Stablize raw-dylib, link_ordinal and -Cdlltool 2023-04-18 11:01:07 -07:00
Mark Rousskov
01d7af11e1 Bump version placeholders 2023-03-15 08:55:22 -04:00
Caleb Zulawski
d3cbedd49e Stabilize movbe target feature 2023-03-02 17:14:47 -05:00
Léo Lanteri Thauvin
bfe5189904 Revert "Stabilize #![feature(target_feature_11)]"
This reverts commit b379d216ee.
2023-03-02 13:41:17 +01:00
Gibby Free
05c1e6b1db stabilize debugger visualizer attribute 2023-03-01 18:56:29 -08:00
bors
fd1f1fa0d1 Auto merge of #106774 - Nugine:master, r=Amanieu
Stabilize cmpxchg16b_target_feature

Tracking issue for target features
+ #44839

stdarch issue
+ https://github.com/rust-lang/stdarch/issues/827

stdarch PR
+ https://github.com/rust-lang/stdarch/pull/1358

reference PR
+ https://github.com/rust-lang/reference/pull/1331

It's my first time contributing to rust-lang/rust. Please tell me if I missed something.
2023-02-28 04:12:34 +00:00
Léo Lanteri Thauvin
b379d216ee Stabilize #![feature(target_feature_11)] 2023-02-01 08:53:02 +01:00
Nugine
a4f2d14875
Stabilize cmpxchg16b_target_feature 2023-02-01 10:54:43 +08:00
Mark Rousskov
3653254f91 Set version placeholders to 1.68 2023-01-25 09:44:29 -05:00
Yuki Okushi
fa8f77a1de
Rollup merge of #105795 - nicholasbishop:bishop-stabilize-efiapi, r=joshtriplett
Stabilize `abi_efiapi` feature

Tracking issue: https://github.com/rust-lang/rust/issues/65815
Closes #65815
2023-01-13 05:47:21 +09:00
Nicholas Bishop
46f9e878f6 Stabilize abi_efiapi feature
Tracking issue: https://github.com/rust-lang/rust/issues/65815
2023-01-11 20:42:13 -05:00
Kathryn Long
a29425c6d4
Stabilize f16c_target_feature 2022-12-30 23:56:18 -05:00
Pietro Albini
f6762c2035 update stabilization version numbers 2022-12-28 09:18:42 -05:00
bors
bbb9cfbbc5 Auto merge of #102318 - Amanieu:default_alloc_error_handler, r=oli-obk
Stabilize default_alloc_error_handler

Tracking issue: #66741

This turns `feature(default_alloc_error_handler)` on by default, which causes the compiler to automatically generate a default OOM handler which panics if `#[alloc_error_handler]` is not provided.

The FCP completed over 2 years ago but the stabilization was blocked due to an issue with unwinding. This was fixed by #88098 so stabilization can be unblocked.

Closes #66741
2022-12-16 21:08:45 +00:00
Vadim Petrochenkov
5b0e80ecf3 Stabilize native library modifier verbatim 2022-11-27 22:36:32 +03:00
Mark Rousskov
455a7bc685 Bump version placeholders to release 2022-11-06 17:11:02 -05:00
bors
1286ee23e4 Auto merge of #102458 - JohnTitor:stabilize-instruction-set, r=oli-obk
Stabilize the `instruction_set` feature

Closes https://github.com/rust-lang/rust/issues/74727
FCP is complete on https://github.com/rust-lang/rust/issues/74727#issuecomment-1242773253
r? `@pnkfelix` and/or `@nikomatsakis`
cc `@xd009642`

Signed-off-by: Yuki Okushi <jtitor@2k36.org>
2022-11-05 20:39:06 +00:00
Amanieu d'Antras
f5e0b760d0 Stabilize default_alloc_error_handler
Closes #66741
2022-11-03 07:12:58 +00:00
Deadbeef
988e75bb65 Stabilize arbitrary_enum_discriminant, take 2 2022-10-22 13:54:39 +08:00
Amanieu d'Antras
430bd6200d Stabilize asm_sym 2022-10-17 22:38:37 +01:00
Urgau
5ae73634dc Stabilize half_open_range_patterns 2022-10-08 11:00:13 +02:00
Yuki Okushi
7874976762
Stabilize the instruction_set feature
Signed-off-by: Yuki Okushi <jtitor@2k36.org>
2022-09-29 17:27:03 +09:00
Pietro Albini
d0305b3d00
replace stabilization placeholders 2022-09-26 10:13:44 +02:00
est31
bca3cf7e86 Stabilize the let_else feature 2022-09-15 21:06:45 +02:00
Jack Huey
3cf0e98dc9 Stabilize GATs 2022-08-30 23:06:24 -04:00