On nightly, dump ICE backtraces to disk
Implement rust-lang/compiler-team#578.
When an ICE is encountered on nightly releases, the new rustc panic handler will also write the contents of the backtrace to disk. If any `delay_span_bug`s are encountered, their backtrace is also added to the file. The platform and rustc version will also be collected.
<img width="1032" alt="Screenshot 2023-03-03 at 2 13 25 PM" src="https://user-images.githubusercontent.com/1606434/222842420-8e039740-4042-4563-b31d-599677171acf.png">
The current behavior will *always* write to disk on nightly builds, regardless of whether the backtrace is printed to the terminal, unless the environment variable `RUSTC_ICE_DISK_DUMP` is set to `0`. This is a compromise and can be changed.
Implement rust-lang/compiler-team#578.
When an ICE is encountered on nightly releases, the new rustc panic
handler will also write the contents of the backtrace to disk. If any
`delay_span_bug`s are encountered, their backtrace is also added to the
file. The platform and rustc version will also be collected.
Previously it removed all other attributes from the crate root.
Now it removes only attributes below itself.
So it becomes possible to configure some global crate properties even for fully unconfigured crates.
Remember names of `cfg`-ed out items to mention them in diagnostics
# Examples
## `serde::Deserialize` without the `derive` feature (a classic beginner mistake)
I had to slightly modify serde so that it uses explicit re-exports instead of a glob re-export. (Update: a serde PR was merged that adds the manual re-exports)
```
error[E0433]: failed to resolve: could not find `Serialize` in `serde`
--> src/main.rs:1:17
|
1 | #[derive(serde::Serialize)]
| ^^^^^^^^^ could not find `Serialize` in `serde`
|
note: crate `serde` has an item named `Serialize` but it is inactive because its cfg predicate evaluated to false
--> /home/gh-Nilstrieb/.cargo/registry/src/index.crates.io-6f17d22bba15001f/serde-1.0.160/src/lib.rs:343:1
|
343 | #[cfg(feature = "serde_derive")]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
344 | pub use serde_derive::{Deserialize, Serialize};
| ^^^^^^^^^
= note: the item is gated behind the `serde_derive` feature
= note: see https://doc.rust-lang.org/cargo/reference/features.html for how to activate a crate's feature
```
(the suggestion is not ideal but that's serde's fault)
I already tested the metadata size impact locally by compiling the `windows` crate without any features. `800k` -> `809k`
r? `@ghost`
`#[cfg]`s are frequently used to gate crate content behind cargo
features. This can lead to very confusing errors when features are
missing. For example, `serde` doesn't have the `derive` feature by
default. Therefore, `serde::Serialize` fails to resolve with a generic
error, even though the macro is present in the docs.
This commit adds a list of all stripped item names to metadata. This is
filled during macro expansion and then, through a fed query, persisted
in metadata. The downstream resolver can then access the metadata to
look at possible candidates for mentioning in the errors.
This slightly increases metadata (800k->809k for the feature-heavy
windows crate), but not enough to really matter.
Each of `{D,Subd}iagnosticMessage::{Str,Eager}` has a comment:
```
// FIXME(davidtwco): can a `Cow<'static, str>` be used here?
```
This commit answers that question in the affirmative. It's not the most
compelling change ever, but it might be worth merging.
This requires changing the `impl<'a> From<&'a str>` impls to `impl
From<&'static str>`, which involves a bunch of knock-on changes that
require/result in call sites being a little more precise about exactly
what kind of string they use to create errors, and not just `&str`. This
will result in fewer unnecessary allocations, though this will not have
any notable perf effects given that these are error paths.
Note that I was lazy within Clippy, using `to_string` in a few places to
preserve the existing string imprecision. I could have used `impl
Into<{D,Subd}iagnosticMessage>` in various places as is done in the
compiler, but that would have required changes to *many* call sites
(mostly changing `&format("...")` to `format!("...")`) which didn't seem
worthwhile.
Error message all end up passing into a function as an `impl
Into<{D,Subd}iagnosticMessage>`. If an error message is creatd as
`&format("...")` that means we allocate a string (in the `format!`
call), then take a reference, and then clone (allocating again) the
reference to produce the `{D,Subd}iagnosticMessage`, which is silly.
This commit removes the leading `&` from a lot of these cases. This
means the original `String` is moved into the
`{D,Subd}iagnosticMessage`, avoiding the double allocations. This
requires changing some function argument types from `&str` to `String`
(when all arguments are `String`) or `impl
Into<{D,Subd}iagnosticMessage>` (when some arguments are `String` and
some are `&str`).
try to downgrade Arc -> Lrc -> Rc -> no-Rc in few places
Expecting this be not slower on non-parallel compiler and probably faster on parallel (checked that this PR builds on it).
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
My type ascription
Oh rip it out
Ah
If you think we live too much then
You can sacrifice diagnostics
Don't mix your garbage
Into my syntax
So many weird hacks keep diagnostics alive
Yet I don't even step outside
So many bad diagnostics keep tyasc alive
Yet tyasc doesn't even bother to survive!
Added byte position range for `proc_macro::Span`
Currently, the [`Debug`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#impl-Debug-for-Span) implementation for [`proc_macro::Span`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#) calls the debug function implemented in the trait implementation of `server::Span` for the type `Rustc` in the `rustc-expand` crate.
The current implementation, of the referenced function, looks something like this:
```rust
fn debug(&mut self, span: Self::Span) -> String {
if self.ecx.ecfg.span_debug {
format!("{:?}", span)
} else {
format!("{:?} bytes({}..{})", span.ctxt(), span.lo().0, span.hi().0)
}
}
```
It returns the byte position of the [`Span`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#) as an interpolated string.
Because this is currently the only way to get a spans position in the file, I might lead someone, who is interested in this information, to parsing this interpolated string back into a range of bytes, which I think is a very non-rusty way.
The proposed `position()`, method implemented in this PR, gives the ability to directly get this info.
It returns a [`std::ops::Range`](https://doc.rust-lang.org/std/ops/struct.Range.html#) wrapping the lowest and highest byte of the [`Span`](https://doc.rust-lang.org/beta/proc_macro/struct.Span.html#).
I put it behind the `proc_macro_span` feature flag because many of the other functions that have a similar footprint also are annotated with it, I don't actually know if this is right.
It would be great if somebody could take a look at this, thank you very much in advanced.
Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
Improve the error message when forwarding a matched fragment to another macro
Adds a link to [Forwarding a matched fragment](https://doc.rust-lang.org/nightly/reference/macros-by-example.html#forwarding-a-matched-fragment) section of the Rust Reference, and suggests a possible fix (using `:tt` instead in the macro definition).
Also removes typos from the original message, it should be `:lifetime` instead of `$lifetime`.
## Motivation
When trying to write a macro which uses a literal in the matcher from the outer macro, like the following one, using a fragment specified that isn't one of `:ident`, `:lifetime`, or `:tt` currently results in a hard to understand message.
```rs
macro_rules! make_t_for_all_tokens {
($($name:literal as $variant:expr,)*) => {
macro_rules! t {
$(
($name) => {
$variant
};
)*
}
};
}
make_t_for_all_tokens! {
"fn" as Token::Fn,
"return" as Token::Return,
"let" as Token::Let,
}
// This creates
//
// macro_rules! t {
// ("fn") => {
// Token::Fn
// };
// ("return") => {
// Token::Return
// };
// ("let") => {
// Token::Let
// };
// }
t!["fn"];
```
### Before
```
error: no rules expected the token `"fn"`
--> src/main.rs:103:10
|
32 | macro_rules! t {
| -------------- when calling this macro
...
103 | t!["fn"];
| ^^^^ no rules expected this token in macro call
|
note: while trying to match `"fn"`
--> src/main.rs:34:6
|
34 | ($name) => {
| ^^^^^
...
58 | / make_t_for_all_tokens! {
59 | | "fn" as Token::Fn,
60 | | "return" as Token::Return,
61 | | "let" as Token::Let,
62 | | }
| |_- in this macro invocation
= note: captured metavariables except for `$tt`, `$ident` and `$lifetime` cannot be compared to other tokens
= note: this error originates in the macro `make_t_for_all_tokens` (in Nightly builds, run with -Z macro-backtrace for more info)
```
### After
```
error: no rules expected the token `"fn"`
--> src/main.rs:103:10
|
32 | macro_rules! t {
| -------------- when calling this macro
...
103 | t!["fn"];
| ^^^^ no rules expected this token in macro call
|
note: while trying to match `"fn"`
--> src/main.rs:34:6
|
34 | ($name) => {
| ^^^^^
...
58 | / make_t_for_all_tokens! {
59 | | "fn" as Token::Fn,
60 | | "return" as Token::Return,
61 | | "let" as Token::Let,
62 | | }
| |_- in this macro invocation
= note: captured metavariables except for `:tt`, `:ident` and `:lifetime` cannot be compared to other tokens
= note: see https://doc.rust-lang.org/nightly/reference/macros-by-example.html#forwarding-a-matched-fragment for more information
= help: try using `:tt` instead in the macro definition
= note: this error originates in the macro `make_t_for_all_tokens` (in Nightly builds, run with -Z macro-backtrace for more info)
```
## Unresolved questions
- Preferrably the suggestion should be attached to the `$name:literal` part of the outer macro, instead of being in the notes section at the end. But I'm not familiar with how the compiler works at all, and I have no idea how to approach this kind of solution.
- `@Nilstrieb` raised a question that the suggestion of adding `:tt` isn't accurate when there's more than `tt` being matched, for example when the input is an `item`.
Adds a link to the relevant part of The Rust Reference in the eror
message, and suggests a possible fix (replacing the fragment specifier
with :tt in the macro definition).
Fixes typos in the original message.
Signed-off-by: Lena Milizé <me@lvmn.org>