Re-export more `rustc_span::symbol` things from `rustc_span`.
`rustc_span::symbol` defines some things that are re-exported from `rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some closely related things such as `Ident` and `kw`. So you can do `use rustc_span::{Symbol, sym}` but you have to do `use rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`, and changes many `rustc_span::symbol::` qualifiers to `rustc_span::`. This is a 300+ net line of code reduction, mostly because many files with two `use rustc_span` items can be reduced to one.
r? `@jieyouxu`
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Promote powerpc64le-unknown-linux-musl to tier 2 with host tools
MCP: https://github.com/rust-lang/compiler-team/issues/803
I'm using crosstool-ng for building a toolchain because GCC 9 from `musl-toolchain.sh` has float ABI issues (?) and can't compile LLVM, and writing a crosstool-ng config for a target feels less hacky than yet another target specific shell script. I also defined a kernel version, since there wasn't one specified before. If a lower version is desired, just let me know. I also tried to match the rust configure args with the loongarch64 musl tier 2 target.
The resulting compiler works fine, built with `DEPLOY=1 ./src/ci/docker/run.sh dist-powerpc64le-linux` and tested on Alpine Linux in a VM and on a bare metal POWER8 machine:
```
qemu-ppc64le:/tmp/rust-nightly-powerpc64le-unknown-linux-musl$ ash install.sh
install: creating uninstall script at /usr/local/lib/rustlib/uninstall.sh
install: installing component 'rustc'
install: installing component 'rust-std-powerpc64le-unknown-linux-musl'
install: installing component 'cargo'
install: installing component 'rustfmt-preview'
install: installing component 'rls-preview'
install: installing component 'rust-analyzer-preview'
install: installing component 'llvm-tools-preview'
install: installing component 'clippy-preview'
install: installing component 'miri-preview'
install: installing component 'rust-analysis-powerpc64le-unknown-linux-musl'
install: installing component 'llvm-bitcode-linker-preview'
install: WARNING: failed to run ldconfig. this may happen when not installing as root. run with --verbose to see the error
rust installed.
qemu-ppc64le:~$ echo 'fn main() { println!("hello world"); }' > test.rs
qemu-ppc64le:~$ rustc test.rs
qemu-ppc64le:~$ ./test
hello world
qemu-ppc64le:~$ file test
test: ELF 64-bit LSB executable, 64-bit PowerPC or cisco 7500, OpenPOWER ELF V2 ABI, version 1 (SYSV), statically linked, BuildID[sha1]=596ee6abf9add487ebc54fb71c2076fb6faea013, with debug_info, not stripped
```
try-job: dist-powerpc64le-linux
reject unsound toggling of RISCV target features
~~Stacked on top of https://github.com/rust-lang/rust/pull/133417, only the last commit is new.~~
Works towards https://github.com/rust-lang/rust/issues/132618 (but more [remains to be done](https://github.com/rust-lang/rust/pull/134337#issuecomment-2544228958))
Part of https://github.com/rust-lang/rust/issues/116344
Cc ``@beetrees`` I hope I got everything. I didn't do anything about "The f and zfinx features are incompatible" and that's not an ABI thing (right?) and I am not sure how to handle it with these ABI checks.
r? ``@workingjubilee``
Ideally we'd also reject target specs that disable the `f` feature but set an ABI that requires `f`... but I don't want to duplicate this logic. I have some ideas for how maybe the entire float ABI check logic should be different, now that we have some examples of what these ABI checks look like, but that will be a future PR.
reject aarch64 target feature toggling that would change the float ABI
~~Stacked on top of https://github.com/rust-lang/rust/pull/133099. Only the last two commits are new.~~
The first new commit lays the groundwork for separately controlling whether a feature may be enabled or disabled. The second commit uses that to make it illegal to *disable* the `neon` feature (which is only possible via `-Ctarget-feature`, and so the new check just adds a warning). Enabling the `neon` feature remains allowed on targets that don't disable `neon` or `fp-armv8`, which is all our built-in targets. This way, the entire PR is not a breaking change.
Fixes https://github.com/rust-lang/rust/issues/131058 for hardfloat targets (together with https://github.com/rust-lang/rust/pull/133102 which fixed it for softfloat targets).
Part of https://github.com/rust-lang/rust/issues/116344.
Rollup of 6 pull requests
Successful merges:
- #133221 (Add external macros specific diagnostics for check-cfg)
- #133386 (Update linux_musl base to dynamically link the crt by default)
- #134191 (Make some types and methods related to Polonius + Miri public)
- #134227 (Update wasi-sdk used to build WASI targets)
- #134279 ((Re-)return adjustment target if adjust kind is never-to-any)
- #134295 (Encode coroutine-closures in SMIR)
r? `@ghost`
`@rustbot` modify labels: rollup
Update linux_musl base to dynamically link the crt by default
However, don't change the behavior of any existing targets at this time. For targets that used the old default, explicitly set `crt_static_default = true`.
This makes it easier for new targets to use the correct defaults while leaving the changing of individual targets to future PRs.
Related to https://github.com/rust-lang/compiler-team/issues/422
forbid toggling x87 and fpregs on hard-float targets
Part of https://github.com/rust-lang/rust/issues/116344, follow-up to https://github.com/rust-lang/rust/pull/129884:
The `x87` target feature on x86 and the `fpregs` target feature on ARM must not be disabled on a hardfloat target, as that would change the float ABI. However, *enabling* `fpregs` on ARM is [explicitly requested](https://github.com/rust-lang/rust/issues/130988) as it seems to be useful. Therefore, we need to refine the distinction of "forbidden" target features and "allowed" target features: all (un)stable target features can determine on a per-target basis whether they should be allowed to be toggled or not. `fpregs` then checks whether the current target has the `soft-float` feature, and if yes, `fpregs` is permitted -- otherwise, it is not. (Same for `x87` on x86).
Also fixes https://github.com/rust-lang/rust/issues/132351. Since `fpregs` and `x87` can be enabled on some builds and disabled on others, it would make sense that one can query it via `cfg`. Therefore, I made them behave in `cfg` like any other unstable target feature.
The first commit prepares the infrastructure, but does not change behavior. The second commit then wires up `fpregs` and `x87` with that new infrastructure.
r? `@workingjubilee`
ABI checks: add support for loongarch
LoongArch psABI[^1] specifies that LSX vector types are passed via general-purpose registers, while LASX vector types are passed indirectly through the stack.
This patch addresses the following warnings:
```
warning: this function call uses a SIMD vector type that is not currently supported with the chosen ABI
--> .../library/core/src/../../stdarch/crates/core_arch/src/loongarch64/lsx/generated.rs:3695:5
|
3695 | __lsx_vreplgr2vr_b(a)
| ^^^^^^^^^^^^^^^^^^^^^ function called here
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #116558 <https://github.com/rust-lang/rust/issues/116558>
= note: `#[warn(abi_unsupported_vector_types)]` on by default
```
[^1]: https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc
r? `@workingjubilee`
LoongArch psABI[^1] specifies that LSX vector types are passed via general-purpose
registers, while LASX vector types are passed indirectly through the stack.
This patch addresses the following warnings:
```
warning: this function call uses a SIMD vector type that is not currently supported with the chosen ABI
--> .../library/core/src/../../stdarch/crates/core_arch/src/loongarch64/lsx/generated.rs:3695:5
|
3695 | __lsx_vreplgr2vr_b(a)
| ^^^^^^^^^^^^^^^^^^^^^ function called here
|
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #116558 <https://github.com/rust-lang/rust/issues/116558>
= note: `#[warn(abi_unsupported_vector_types)]` on by default
```
[^1]: https://github.com/loongson/la-abi-specs/blob/release/lapcs.adoc
rustc_target: ppc64 target string fixes for LLVM 20
LLVM continues to clean these up, and we continue to make this consistent. This is similar to 9caced7bad, e985396145, and
a10e744faf.
```@rustbot``` label: +llvm-main
LLVM continues to clean these up, and we continue to make this
consistent. This is similar to 9caced7bad,
e985396145, and
a10e744faf.
`@rustbot` label: +llvm-main
rust_for_linux: -Zreg-struct-return commandline flag for X86 (#116973)
Command line flag `-Zreg-struct-return` for X86 (32-bit) for rust-for-linux.
This flag enables the same behavior as the `abi_return_struct_as_int` target spec key.
- Tracking issue: https://github.com/rust-lang/rust/issues/116973
Mark visionOS as supporting `std`
Cargo's -Zbuild-std has recently started checking this field, which causes it to fail to compile even though we have full support for the standard library on these targets.
[Example of failed build](https://github.com/rust-random/getrandom/actions/runs/12069033154/job/33655430622).
Affected targets: `aarch64-apple-visionos` and `aarch64-apple-visionos-sim`.
r? Noratrieb (because you've worked with `rustc` target metadata IIRC)
``@rustbot`` label O-visionos
Support input/output in vector registers of PowerPC inline assembly
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types as input/output.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| PowerPC | `vreg` | `altivec` | `i8x16`, `i16x8`, `i32x4`, `f32x4` |
| PowerPC | `vreg` | `vsx` | `f32`, `f64`, `i64x2`, `f64x2` |
In addition to floats and `core::simd` types listed above, `core::arch` types and custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types and relevant target features are currently unstable.
r? `@Amanieu`
`@rustbot` label +O-PowerPC +A-inline-assembly
Add `+forced-atomics` feature to esp32s2 no_std target
Similar to https://github.com/rust-lang/rust/pull/114499 but for the Xtensa backend. The ESP32-S2 doesn't have native atomic support, but can have atomic load/stores as part of the ISA with this LLVM codegen feature.
Note: The current rev of LLVM that rustc is using doesn't contain the `+forced-atomics` feature for Xtensa, but I'm pushing this now to remove the patch from our fork in `esp-rs/rust`.
r? ``@Amanieu`` because you reviewed the related RISC-V PR
Fix target_feature handling in freg of LoongArch inline assembly
In LoongArch inline assembly, freg currently always accepts f32/f64 as input/output.
9b4d7c6a40/compiler/rustc_target/src/asm/loongarch.rs (L41)
However, these types actually require f/d target features as in RISC-V.
Otherwise, an (ugly) compile error will occur: https://godbolt.org/z/K61Gq1E9E
f32/f64 without f:
```
error: couldn't allocate output register for constraint '{$f1}'
--> <source>:12:11
|
12 | asm!("", in("$f1") x, lateout("$f1") y);
| ^
```
f64 with f but without d:
```
error: scalar-to-vector conversion failed, possible invalid constraint for vector type
--> <source>:19:11
|
19 | asm!("", in("$f1") x, lateout("$f1") y);
| ^
```
cc ``@heiher``
r? ``@Amanieu``
``@rustbot`` label +O-LoongArch +A-inline-assembly
Support `clobber_abi` in AVR inline assembly
This PR implements the `clobber_abi` part necessary to eventually stabilize the inline assembly for AVR. This is tracked in #93335.
This is heavily inspired by the sibling-PR #131310 for the MSP430. I've explained my reasoning in the first commit message in detail, which is reproduced below for easier reviewing:
This follows the [ABI documentation] of AVR-GCC:
> The [...] call-clobbered general purpose registers (GPRs) are registers that might be destroyed (clobbered) by a function call.
>
> - **R18–R27, R30, R31**
>
> These GPRs are call clobbered. An ordinary function may use them without restoring the contents. [...]
>
> - **R0, T-Flag**
>
> The temporary register and the T-flag in SREG are also call-clobbered, but this knowledge is not exposed explicitly to the compiler (R0 is a fixed register).
Therefore this commit lists the aforementioned registers `r18–r27`, `r30` and `r31` as clobbered registers. Since the `r0` register (listed above as well) is not available in inline assembly at all (potentially because the AVR-GCC considers it a fixed register causing the register to never be used in register allocation and LLVM adopting this), there is no need to list it in the clobber list (the `r0`-variant is not even available). A comment was added to ensure, that the `r0` gets added to the clobber-list once the register gets usable in inline ASM.
Since the SREG is normally considered clobbered anyways (unless the user supplies the `preserve_flags`-option), there is no need to explicitly list a bit in this register (which is not possible to list anyways).
Note, that this commit completely ignores the case of interrupts (that are described in the ABI-specification), since every register touched in an ISR need to be saved anyways.
[ABI documentation]: https://gcc.gnu.org/wiki/avr-gcc#Call-Used_Registers
r? ``@Amanieu``
``@rustbot`` label +O-AVR
ensure JSON-defined targets are consistent
We have a `check_consistency` check that ensures some invariants which (presumably) the rest of the compiler relies on. However, JSON targets can easily be written in a way that violates those invariants. So this PR applies the same consistency check to JSON targets that we already enforce for built-in targets.
I have converted many of the assertions in that function to new macros that show a nice error instead of a panic; if people are okay with the general approach here, I can do that for the rest of the checks as well.