Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).
Switch to `EarlyBinder` for `collect_return_position_impl_trait_in_trait_tys`
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `collect_return_position_impl_trait_in_trait_tys` query and removes `bound_return_position_impl_trait_in_trait_tys`.
r? `@lcnr`
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
Various minor Idx-related tweaks
Nothing particularly exciting here, but a couple of things I noticed as I was looking for more index conversions to simplify.
cc https://github.com/rust-lang/compiler-team/issues/606
r? `@WaffleLapkin`
Remove `TypeSuper{Foldable,Visitable}` impls for `Region`.
These traits exist so that folders/visitors can recurse into types of interest: binders, types, regions, predicates, and consts. But `Region` is non-recursive and cannot contain other types of interest, so its methods in these traits are trivial.
This commit inlines and removes those trivial methods.
r? `@compiler-errors`
Remove `remap_env_constness` in queries
This removes some of the complexities with const traits. #88119 used to be caused by this but was fixed by `param_env = param_env.without_const()`.
These traits exist so that folders/visitors can recurse into types of
interest: binders, types, regions, predicates, and consts. But `Region`
is non-recursive and cannot contain other types of interest, so its
methods in these traits are trivial.
This commit inlines and removes those trivial methods.
Switch to `EarlyBinder` for `impl_subject` query
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
Several queries `X` have a `bound_X` variant that wraps the output in `EarlyBinder`. This adds `EarlyBinder` to the return type of the `impl_subject` query and removes `bound_impl_subject`.
r? ```@lcnr```
don't uniquify regions when canonicalizing
uniquifying causes a bunch of issues, most notably it causes `AliasEq(<?x as Trait<'a>>::Assoc, <?x as Trait<'a>>::Assoc)` to result in ambiguity because both `normalizes-to` paths result in ambiguity and substs equate should trivially succeed but doesn't because we uniquified `'a` to two different regions.
I originally added uniquification to make it easier to deal with requirement 6 from the dev-guide: https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html#requirements
> ### 6. Trait solving must be (free) lifetime agnostic
>
> Trait solving during codegen should have the same result as during typeck. As we erase
> all free regions during codegen we must not rely on them during typeck. A noteworthy example
> is special behavior for `'static`.
cc https://github.com/rust-lang/rustc-dev-guide/pull/1671
Relying on regions being identical may cause ICE during MIR typeck, but even without this PR we can end up relying on that as type inference vars can resolve to types which contain an identical region. Let's land this and deal with any ICE that crop up as we go. Will look at this issue again before stabilization.
r? ```@compiler-errors```
Improve safe transmute error reporting
This patch updates the error reporting when Safe Transmute is not possible between 2 types by including the reason.
Also, fix some small bugs that occur when computing the `Answer` for transmutability.
This patch updates the error reporting when Safe Transmute is not
possible between 2 types by including the reason.
Also, fix some small bugs that occur when computing the `Answer` for
transmutability.
Check for body owner fallibly in error reporting
Sometimes the "body id" we use for an obligation cause is not actually a body owner, like when we're doing WF checking on items.
Fixes#110157
cleanup our region error API
- require `TypeErrCtxt` to always result in an error, closing #108810
- move `resolve_regions_and_report_errors` to the `ObligationCtxt`
- call `process_registered_region_obligations` in `resolve_regions`
- move `resolve_regions` into the `outlives` submodule
- add `#[must_use]` to functions returning lists of errors
r? types
I'm surprised the compiler doesn't warn about these. It appears having
an `impl` on a struct is enough to avoid a warning about it never being
constructed.
Split implied and super predicate queries, then allow elaborator to filter only supertraits
Split the `super_predicates_of` query into a new `implied_predicates_of` query. The former now only returns the *real* supertraits of a trait alias, and the latter now returns the implied predicates (which include all of the `where` clauses of the trait alias). The behavior of these queries is identical for regular traits.
Now that the two queries are split, we can add a new filter method to the elaborator, `filter_only_self()`, which can be used in instances that we need only the *supertrait* predicates, such as during the elaboration used in closure signature deduction. This toggles the usage of `super_predicates_of` instead of `implied_predicates_of` during elaboration of a trait predicate.
This supersedes #104745, and fixes the four independent bugs identified in that PR.
Fixes#104719Fixes#106238Fixes#110023Fixes#109514
r? types
- require `TypeErrCtxt` to always result in an error
- move `resolve_regions_and_report_errors` to the `ObligationCtxt`
- merge `process_registered_region_obligations` into `resolve_regions`
Support safe transmute in new solver
Basically copies the same implementation as the old solver, but instead of looking for param types, we look for type or const placeholders.
Enforce that `PointerLike` requires a pointer-like ABI
At least temporarily, let's ban coercing things that are pointer-sized and pointer-aligned but *not* `Abi::Scalar(..)` into `dyn*`. See: https://github.com/rust-lang/rust/pull/104694#discussion_r1142522073
This can be lifted in the future if we decie that we *want* to be able to coerce something `repr(C)` into a `dyn*`, but we'll have to figure out what to do with Miri and codegen...
r? compiler
Make elaboration generic over input
Combines all the `elaborate_*` family of functions into just one, which is an iterator over the same type that you pass in (e.g. elaborating `Predicate` gives `Predicate`s, elaborating `Obligation`s gives `Obligation`s, etc.)
Implement support for `GeneratorWitnessMIR` in new solver
r? ```@cjgillot```
I mostly want this to cut down the number of failing UI tests when running the UI test suite with `--compare-mode=next-solver`, but there doesn't seem like much reason to block implementing this since it adds minimal complexity to the existing structural traits impl in the new solver.
If others are against adding this for some reason, then maybe we should just make `GeneratorWitnessMIR` return `NoSolution` for these traits. Anything but an ICE please 😸🧊
Tweak debug outputs to make debugging new solver easier
1. Move the fields that are "most important" (I know this is subjective) to the beginning of the structs.
For goals, I typically care more about the predicate than the param-env (which is significantly longer in debug output).
For canonicalized things, I typically care more about what is *being* canonicalized.
For a canonical response, I typically care about the response -- or at least, it's typically useful to put it first since it's short and affects the whether the solver recurses or not...
2. Add some more debug and instrument calls to functions to add more structure to tracing lines.
r? `@oli-obk` or `@BoxyUwU` (since I think `@lcnr` is on holiday)
Remove `intercrate` and `mark_ambiguous` from `TypeRelation`
Fixes#109863
Pulls this logic into `super_combine_tys`, which has access to `InferCtxt` and takes a `ObligationEmittingRelation` -- both of which simplify the logic here.
r? `@oli-obk` `@aliemjay`
This solves a regression where `0.0.cmp()` was ambiguous when a custom
trait with a `cmp` method was in scope.
FOr integers it shouldn't be a problem in practice so I wasn't able to
add a test.
Update `ty::VariantDef` to use `IndexVec<FieldIdx, FieldDef>`
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
Closures always implement `FnOnce` in new solver
We should process `[closure]: FnOnce(Tys...) -> Ty` obligations *before* fallback and closure analysis. We can do this by taking advantage of the fact that `FnOnce` is always implemented by closures, even before we definitely know the closure kind.
Fixescompiler-errors/next-solver-hir-issues#15
r? ``@oli-obk`` (trying to spread the reviewer load for new trait solver prs, and this one is pretty self-contained, though feel free to reassign 😸)
Freshen normalizes-to hack goal RHS in the evaluate loop
Ensure that we repeatedly equate the unconstrained RHS of the normalizes-to hack goal with the *actual* RHS of the goal, even if the normalizes-to goal loops several times and thus we replace the unconstrained RHS var repeatedly.
Alternative to #109583.
And while doing the updates for that, also uses `FieldIdx` in `ProjectionKind::Field` and `TypeckResults::field_indices`.
There's more places that could use it (like `rustc_const_eval` and `LayoutS`), but I tried to keep this PR from exploding to *even more* places.
Part 2/? of https://github.com/rust-lang/compiler-team/issues/606
Canonicalize float var as float in new solver
Typo in new canonicalizer -- we should be canonicalizing float vars as `CanonicalTyVarKind::Float`, not `CanonicalTyVarKind::Int`.
Fixescompiler-errors/next-solver-hir-issues#9
Don't ICE on `DiscriminantKind` projection in new solver
As title says, since we now actually call `Ty::discriminant_kind` on placeholder types 😃
Also drive-by simplify `Pointee::Metadata` projection logic, and fix the UI test because the `<T as Pointee>::Metadata` tests weren't actually exercising the new projection logic, since we still eagerly normalize (which hits `project.rs` in the old solver) in HIR typeck.
r? `@lcnr` tho feel free to re-roll, this pr is very low-priority and not super specific to the new trait solver.
Fixescompiler-errors/next-solver-hir-issues#14
Do not consider elaborated projection predicates for objects in new solver
Object types have projection bounds which are elaborated during astconv. There's no need to do it again for projection goals, since that'll give us duplicate projection candidatesd that are distinct up to regions due to the fact that we canonicalize every region to a separate variable. See quick example below the break for a better explanation.
Discussed this with lcnr, and adding a stop-gap until we get something like intersection region constraints (or modify canonicalization to canonicalize identical regions to the same canonical regions) -- after which, this will hopefully not matter and may be removed.
r? `@lcnr`
---
See `tests/ui/traits/new-solver/more-object-bound.rs`:
Consider a goal: `<dyn Iter<'a, ()> as Iterator>::Item = &'a ()`.
After canonicalization: `<dyn Iter<'!0r, (), Item = '!1r ()> as Iterator>::Item == &!'2r ()`
* First object candidate comes from the item bound in the dyn's bounds itself, giving us `<dyn Iter<'!0r, (), Item = '?!r ()> as Iterator>::Item == &!'1r ()`. This gives us one region constraint: `!'1r == !'2r`.
* Second object candidate comes from elaborating the principal trait ref, gives us `<dyn Iter<'!0r, (), Item = '!1r ()> as Iterator>::Item == &!'0r ()`. This gives us one region constraint: `!'0r == !'2r`.
* Oops! Ambiguity!
Rename `IndexVec::last` → `last_index`
As I've been trying to replace a `Vec` with an `IndexVec`, having `last` exist on both but returning very different types makes the transition a bit awkward -- the errors are later, where you get things like "there's no `ty` method on `mir::Field`" rather than a more localized error like "hey, there's no `last` on `IndexVec`".
So I propose renaming `last` to `last_index` to help distinguish `Vec::last`, which returns an element, and `IndexVec::last_index`, which returns an index.
(Similarly, `Iterator::last` also returns an element, not an index.)
Check for overflow in `assemble_candidates_after_normalizing_self_ty`
Prevents a stack overflow (⚠️❗) in the new solver when we have param-env candidates that look like: `T: Trait<Assoc = <T as Trait>::Assoc>`
The current error message looks bad, but that's because we don't distinguish overflow and other ambiguity errors. I'll break that out into a separate PR since the fix may be controversial.
r? `@lcnr`
As I've been trying to replace a `Vec` with an `IndexVec`, having `last` exist on both but returning very different types makes the transition a bit awkward -- the errors are later, where you get things like "there's no `ty` method on `mir::Field`" rather than a more localized error like "hey, there's no `last` on `IndexVec`".
So I propose renaming `last` to `last_index` to help distinguish `Vec::last`, which returns an element, and `IndexVec::last_index`, which returns an index.
(Similarly, `Iterator::last` also returns an element, not an index.)
Rollup of 8 pull requests
Successful merges:
- #91793 (socket ancillary data implementation for FreeBSD (from 13 and above).)
- #92284 (Change advance(_back)_by to return the remainder instead of the number of processed elements)
- #102472 (stop special-casing `'static` in evaluation)
- #108480 (Use Rayon's TLV directly)
- #109321 (Erase impl regions when checking for impossible to eagerly monomorphize items)
- #109470 (Correctly substitute GAT's type used in `normalize_param_env` in `check_type_bounds`)
- #109562 (Update ar_archive_writer to 0.1.3)
- #109629 (remove obsolete `givens` from regionck)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Add a builtin `FnPtr` trait that is implemented for all function pointers
r? `@ghost`
Rebased version of https://github.com/rust-lang/rust/pull/99531 (plus adjustments mentioned in the PR).
If perf is happy with this version, I would like to land it, even if the diagnostics fix in 9df8e1befb5031a5bf9d8dfe25170620642d3c59 only works for `FnPtr` specifically, and does not generally improve blanket impls.
stop special-casing `'static` in evaluation
fixes#102360
I have no idea whether this actually removed all places where `'static` matters. Without canonicalization it's very easy to accidentally rely on `'static` again. Blocked on changing the `order_dependent_trait_objects` future-compat lint to a hard error
r? `@nikomatsakis`
Don't elaborate non-obligations into obligations
It's suspicious to elaborate a `PolyTraitRef` or `Predicate` into an `Obligation`, since the former does not have a param-env associated with it, but the latter does. This is a footgun that, while not being misused *currently* in the compiler, easily could be misused by someone less familiar with the elaborator's inner workings.
This PR just changes the API -- ideally, the elaborator wouldn't even have to deal with obligations if we're not elaborating obligations, but that would require a bit more abstraction than I could be bothered with today.
Implement non-const `Destruct` trait in new solver
Makes it so that we can call stdlib methods like `Option::map` in **non-const** environments, since *many* stdlib methods have `Destruct` bounds 😅
This doesn't bother to implement `const Destruct` yet, but it shouldn't be too hard to do so. Just didn't bother since we already don't have much support for const traits in the new solver anyways. I'd be happy to add skeleton support for `const Destruct`, though, if the reviewer desires.
Rollup of 9 pull requests
Successful merges:
- #108629 (rustdoc: add support for type filters in arguments and generics)
- #108924 (panic_immediate_abort requires abort as a panic strategy)
- #108961 (Refine error spans for const args in hir typeck)
- #108986 (sync LVI tests)
- #109142 (Add block-based mutex unlocking example)
- #109368 (fix typo in the creation of OpenOption for RustyHermit)
- #109493 (Return nested obligations from canonical response var unification)
- #109515 (Add AixLinker to support linking on AIX)
- #109536 (resolve: Rename some cstore methods to match queries and add comments)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Return nested obligations from canonical response var unification
Handle alias-eq obligations being emitted from `instantiate_and_apply_query_response` in:
* `EvalCtxt` - by processing the nested obligations in the next loop by `new_goals`
* `FulfillCtxt` - by adding the nested obligations to the fulfillment's pending obligations
* `InferCtxt::evaluate_obligation` - ~~by returning `EvaluationResult::EvaluatedToAmbig` (boo 👎, see the FIXME)~~ same behavior as above, since we use fulfillment and `select_where_possible`
The only one that's truly sketchy is `evaluate_obligation`, but it's not hard to modify this behavior moving forward.
From #109037, I think a smaller repro could be crafted if I were smarter, but I am not, so I just took this from #105878.
r? `@lcnr` cc `@BoxyUwU`
Refine error spans for const args in hir typeck
Improve just a couple of error messages having to do with mismatched consts.
r? `@ghost` i'll put this up when the dependent commits are merged
Rollup of 7 pull requests
Successful merges:
- #108541 (Suppress `opaque_hidden_inferred_bound` for nested RPITs)
- #109137 (resolve: Querify most cstore access methods (subset 2))
- #109380 (add `known-bug` test for unsoundness issue)
- #109462 (Make alias-eq have a relation direction (and rename it to alias-relate))
- #109475 (Simpler checked shifts in MIR building)
- #109504 (Stabilize `arc_into_inner` and `rc_into_inner`.)
- #109506 (make param bound vars visibly bound vars with -Zverbose)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Make alias-eq have a relation direction (and rename it to alias-relate)
Emitting an "alias-eq" is too strict in some situations, since we don't always want strict equality between a projection and rigid ty. Adds a relation direction.
* I could probably just reuse this [`RelationDir`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/combine/enum.RelationDir.html) -- happy to uplift that struct into middle and use that instead, but I didn't feel compelled to... 🤷
* Some of the matching in `compute_alias_relate_goal` is a bit verbose -- I guess I could simplify it by using [`At::relate`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_infer/infer/at/struct.At.html#method.relate) and mapping the relation-dir to a variance.
* Alternatively, I coulld simplify things by making more helper functions on `EvalCtxt` (e.g. `EvalCtxt::relate_with_direction(T, T)` that also does the nested goal registration). No preference.
r? ```@lcnr``` cc ```@BoxyUwU``` though boxy can claim it if she wants
NOTE: first commit is all the changes, the second is just renaming stuff
new solver cleanup + implement coherence
the cleanup:
- change `Certainty::unify_and` to consider ambig + overflow to be ambig
- rename `trait_candidate_should_be_dropped_in_favor_of` to `candidate_should_be_dropped_in_favor_of`
- remove outdated fixme
For coherence I mostly just add an ambiguous candidate if the current trait ref is unknowable. I am doing the same for reservation impl where I also just add an ambiguous candidate.
a general type system cleanup
removes the helper functions `traits::fully_solve_X` as they add more complexity then they are worth. It's confusing which of these helpers should be used in which context.
changes the way we deal with overflow to always add depth in `evaluate_predicates_recursively`. It may make sense to actually fully transition to not have `recursion_depth` on obligations but that's probably a bit too much for this PR.
also removes some other small - and imo unnecessary - helpers.
r? types
Do not suggest bounds restrictions for synthesized RPITITs
Before this PR we were getting ...
```
warning: the feature `async_fn_in_trait` is incomplete and may not be safe to use and/or cause compiler crashes
--> tests/ui/async-await/in-trait/missing-send-bound.rs:5:12
|
5 | #![feature(async_fn_in_trait)]
| ^^^^^^^^^^^^^^^^^
|
= note: see issue #91611 <https://github.com/rust-lang/rust/issues/91611> for more information
= note: `#[warn(incomplete_features)]` on by default
error: future cannot be sent between threads safely
--> tests/ui/async-await/in-trait/missing-send-bound.rs:17:20
|
17 | assert_is_send(test::<T>());
| ^^^^^^^^^^^ future returned by `test` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `impl Future<Output = ()>`
note: future is not `Send` as it awaits another future which is not `Send`
--> tests/ui/async-await/in-trait/missing-send-bound.rs:13:5
|
13 | T::bar().await;
| ^^^^^^^^ await occurs here on type `impl Future<Output = ()>`, which is not `Send`
note: required by a bound in `assert_is_send`
--> tests/ui/async-await/in-trait/missing-send-bound.rs:21:27
|
21 | fn assert_is_send(_: impl Send) {}
| ^^^^ required by this bound in `assert_is_send`
help: consider further restricting the associated type
|
16 | fn test2<T: Foo>() where impl Future<Output = ()>: Send {
| ++++++++++++++++++++++++++++++++++++
error: aborting due to previous error; 1 warning emitted
```
and we want this output ...
```
warning: the feature `async_fn_in_trait` is incomplete and may not be safe to use and/or cause compiler crashes
--> $DIR/missing-send-bound.rs:5:12
|
LL | #![feature(async_fn_in_trait)]
| ^^^^^^^^^^^^^^^^^
|
= note: see issue #91611 <https://github.com/rust-lang/rust/issues/91611> for more information
= note: `#[warn(incomplete_features)]` on by default
error: future cannot be sent between threads safely
--> $DIR/missing-send-bound.rs:17:20
|
LL | assert_is_send(test::<T>());
| ^^^^^^^^^^^ future returned by `test` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `impl Future<Output = ()>`
note: future is not `Send` as it awaits another future which is not `Send`
--> $DIR/missing-send-bound.rs:13:5
|
LL | T::bar().await;
| ^^^^^^^^ await occurs here on type `impl Future<Output = ()>`, which is not `Send`
note: required by a bound in `assert_is_send`
--> $DIR/missing-send-bound.rs:21:27
|
LL | fn assert_is_send(_: impl Send) {}
| ^^^^ required by this bound in `assert_is_send`
error: aborting due to previous error; 1 warning emitted
```
r? `@compiler-errors`
Only implement Fn* traits for extern "Rust" safe function pointers and items
Since calling the function via an `Fn` trait will assume `extern "Rust"` ABI and not do any safety checks, only safe `extern "Rust"` function can implement the `Fn` traits. This syncs the logic between the old solver and the new solver.
r? `@compiler-errors`
Constrain const vars to error if const types are mismatched
When equating two consts of different types, if either are const variables, constrain them to the correct const error kind.
This helps us avoid "successfully" matching a const against an impl signature but leaving unconstrained const vars, which will lead to incremental ICEs when we call const-eval queries during const projection.
Fixes#109296
The second commit in the stack fixes a regression in the first commit where we end up mentioning `[const error]` in an impl overlap error message. I think the error message changes for the better, but I could implement alternative strategies to avoid this without delaying the overlap error message...
r? `@BoxyUwU`
new solver: make all goal evaluation able to be automatically rerun
It is generally wrong to call `evaluate_goal` multiple times or `evaluate_goal` and `evaluate_all` for the same `QueryResult` without correctly handling rerunning the goals when inference makes progress. Not doing so will result in the assertion in `evaluate_goal` firing because rerunning the goal will lead to a more accurate `QueryResult`.
Currently there are lots of places that get this wrong and generally it is complex and error prone to handle correctly everywhere. This PR introduces a way to add goals to the `EvalCtxt` and then run all the added goals in a loop so that `evaluate_goal`/`evaluate_all` is not necessary to call manually.
There are a few complications for making everything work "right":
1. the `normalizes-to` hack that replaces the rhs with an unconstrained infer var requires special casing in the new `try_evaluate_added_goals` function similar to how `evaluate_goal`'s assertion special cases that hack.
2. `assemble_candidates_after_normalizing_self_ty`'s normalization step needs to be reran for each candidate otherwise the found candidates will potentially get a more accurate `QueryResult` when rerunning the projection/trait goal which can effect the `QueryResult` of the projection/trait goal.
This is implemented via `EvalCtxt::probe`'s closure's `EvalCtxt` inheriting the added goals of the `EvalCtxt` that `probe` is called on, allowing us to add goals in a probe, and then enter a nested probe for each candidate and evaluate added goals which include the normalization step's goals.
I made `make_canonical_response` evaluate added goals so that it will be hard to mess up the impl of the solver by forgetting to evaluate added goals. Right now the only way to mess this up would be to call `response_no_constraints` (which from the name is obviously weird).
The visibility of `evaluate_goal` means that it can be called from various `compute_x_goal` or candidate assembly functions, this is generally wrong and we should never call `evaluate_goal` manually, instead we should be calling `add_goal`/`add_goals`. This is solved by moving `evaluate_goal` `evaluate_canonical_goal` and `compute_goal` into `eval_ctxt`'s module and making them private so they cannot be called from elsewhere, forcing people to call `add_goal/s` and `evaluate_added_goals_and_make_canonical_resposne`/`try_evaluate_added_goals`
---
Other changes:
- removed the `&& false` that was introduced to the assertion in `evaluate_goal` in #108839
- remove a `!self.did_overflow()` requirement in `search_graph.is_empty()` which causes goals that overflow to ICE
- made `EvalCtxt::eq` take `&mut self` and add all the nested goals via `add_goals` instead of returning them as 99% of call sites just immediately called `EvalCtxt::add_goals` manually.
r? `````@lcnr`````