Harmonize using root or leaf obligation in trait error reporting
When #121826 changed the error reporting to use root obligation and not the leafmost obligation, it didn't actually make sure that all the other diagnostics helper functions used the right obligation.
Specifically, when reporting similar impl candidates we are looking for impls of the root obligation, but trying to match them against the trait ref of the leaf obligation.
This does a few other miscellaneous changes. There's a lot more clean-up that could be done here, but working with this code is really grief-inducing due to how messy it has become over the years. Someone really needs to show it love. 😓
r? ``@estebank``
Fixes#126129
Use `tidy` to sort crate attributes for all compiler crates.
We already do this for a number of crates, e.g. `rustc_middle`, `rustc_span`, `rustc_metadata`, `rustc_span`, `rustc_errors`.
For the ones we don't, in many cases the attributes are a mess.
- There is no consistency about order of attribute kinds (e.g. `allow`/`deny`/`feature`).
- Within attribute kind groups (e.g. the `feature` attributes), sometimes the order is alphabetical, and sometimes there is no particular order.
- Sometimes the attributes of a particular kind aren't even grouped all together, e.g. there might be a `feature`, then an `allow`, then another `feature`.
This commit extends the existing sorting to all compiler crates, increasing consistency. If any new attribute line is added there is now only one place it can go -- no need for arbitrary decisions.
Exceptions:
- `rustc_log`, `rustc_next_trait_solver` and `rustc_type_ir_macros`, because they have no crate attributes.
- `rustc_codegen_gcc`, because it's quasi-external to rustc (e.g. it's ignored in `rustfmt.toml`).
r? `@davidtwco`
For E0277 suggest adding `Result` return type for function when using QuestionMark `?` in the body.
Adding suggestions for following function in E0277.
```rust
fn main() {
let mut _file = File::create("foo.txt")?;
}
```
to
```rust
fn main() -> Result<(), Box<dyn std::error::Error>> {
let mut _file = File::create("foo.txt")?;
return Ok(());
}
```
According to the issue #125997, only the code examples in the issue are targeted, but the issue covers a wider range of situations.
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
We already do this for a number of crates, e.g. `rustc_middle`,
`rustc_span`, `rustc_metadata`, `rustc_span`, `rustc_errors`.
For the ones we don't, in many cases the attributes are a mess.
- There is no consistency about order of attribute kinds (e.g.
`allow`/`deny`/`feature`).
- Within attribute kind groups (e.g. the `feature` attributes),
sometimes the order is alphabetical, and sometimes there is no
particular order.
- Sometimes the attributes of a particular kind aren't even grouped
all together, e.g. there might be a `feature`, then an `allow`, then
another `feature`.
This commit extends the existing sorting to all compiler crates,
increasing consistency. If any new attribute line is added there is now
only one place it can go -- no need for arbitrary decisions.
Exceptions:
- `rustc_log`, `rustc_next_trait_solver` and `rustc_type_ir_macros`,
because they have no crate attributes.
- `rustc_codegen_gcc`, because it's quasi-external to rustc (e.g. it's
ignored in `rustfmt.toml`).
Make `ObligationEmittingRelation`s emit `Goal` rather than `Obligation`
Helps avoid needing to uplift `Obligation` into the solver. We still can't get rid of `ObligationCause`, but we can keep it as an associated type for `InferCtxtLike` and just give it a `dummy` function.
There's some shuttling between `Goal` and `Obligation` that may be perf-sensitive... Let's see what rust-timer says.
r? lcnr
Only compute `specializes` query if (min)specialization is enabled in the crate of the specializing impl
Fixes (after backport) https://github.com/rust-lang/rust/issues/125197
### What
https://github.com/rust-lang/rust/pull/122791 makes it so that inductive cycles are no longer hard errors. That means that when we are testing, for example, whether these impls overlap:
```rust
impl PartialEq<Self> for AnyId {
fn eq(&self, _: &Self) -> bool {
todo!()
}
}
impl<T: Identifier> PartialEq<T> for AnyId {
fn eq(&self, _: &T) -> bool {
todo!()
}
}
```
...given...
```rust
pub trait Identifier: Display + 'static {}
impl<T> Identifier for T where T: PartialEq + Display + 'static {}
```
Then we try to see if the second impl holds given `T = AnyId`. That requires `AnyId: Identifier`, which requires that `AnyId: PartialEq`, which is satisfied by these two impl candidates... The `PartialEq<T>` impl is a cycle, and we used to winnow it when we used to treat inductive cycles as errors.
However, now that we don't winnow it, this means that we *now* try calling `candidate_should_be_dropped_in_favor_of`, which tries to check whether one of the impls specializes the other: the `specializes` query. In that query, we currently bail early if the impl is local.
However, in a foreign crate, we try to compute if the two impls specialize each other by doing trait solving. This may itself lead to the same situation where we call `specializes`, which will lead to a query cycle.
### How does this fix the problem
We now record whether specialization is enabled in foreign crates, and extend this early-return behavior to foreign impls too. This means that we can only encounter these cycles if we truly have a specializing impl from a crate with specialization enabled.
-----
r? `@oli-obk` or `@lcnr`
Remove the `ty` field from type system `Const`s
Fixes#125556Fixes#122908
Part of the work on `adt_const_params`/`generic_const_param_types`/`min_generic_const_exprs`/generally making the compiler nicer. cc rust-lang/project-const-generics#44
Please review commit-by-commit otherwise I wasted a lot of time not just squashing this into a giant mess (and also it'll be SO much nicer because theres a lot of fluff changes mixed in with other more careful changes if looking via File Changes
---
Why do this?
- The `ty` field keeps causing ICEs and weird behaviour due to it either being treated as "part of the const" or it being forgotten about leading to ICEs.
- As we move forward with `adt_const_params` and a potential `min_generic_const_exprs` it's going to become more complex to actually lower the correct `Ty<'tcx>`
- It muddles the idea behind how we check `Const` arguments have the correct type. By having the `ty` field it may seem like we ought to be relating it when we relate two types, or that its generally important information about the `Const`.
- Brings the compiler more in line with `a-mir-formality` as that also tracks the type of type system `Const`s via `ConstArgHasType` bounds in the env instead of on the `Const` itself.
- A lot of stuff is a lot nicer when you dont have to pass around the type of a const lol. Everywhere we construct `Const` is now significantly nicer 😅
See #125671's description for some more information about the `ty` field
---
General summary of changes in this PR:
- Add `Ty` to `ConstKind::Value` as otherwise there is no way to implement `ConstArgHasType` to ensure that const arguments are correctly typed for the parameter when we stop creating anon consts for all const args. It's also just incredibly difficult/annoying to thread the correct `Ty` around to a bunch of ctfe functions otherwise.
- Fully implement `ConstArgHasType` in both the old and new solver. Since it now has no reliance on the `ty` field it serves its originally intended purpose of being able to act as a double check that trait vs impls have correctly typed const parameters. It also will now be able to be responsible for checking types of const arguments to parameters under `min_generic_const_exprs`.
- Add `Ty` to `mir::Const::Ty`. I dont have a great understanding of why mir constants are setup like this to be honest. Regardless they need to be able to determine the type of the const and the easiest way to make this happen was to simply store the `Ty` along side the `ty::Const`. Maybe we can do better here in the future but I'd have to spend way more time looking at everywhere we use `mir::Const`.
- rustdoc has its own `Const` which also has a `ty` field. It was relatively easy to remove this.
---
r? `@lcnr` `@compiler-errors`
Rollup of 9 pull requests
Successful merges:
- #124840 (resolve: mark it undetermined if single import is not has any bindings)
- #125622 (Winnow private method candidates instead of assuming any candidate of the right name will apply)
- #125648 (Remove unused(?) `~/rustsrc` folder from docker script)
- #125672 (Add more ABI test cases to miri (RFC 3391))
- #125800 (Fix `mut` static task queue in SGX target)
- #125871 (Orphanck[old solver]: Consider opaque types to never cover type parameters)
- #125893 (Handle all GVN binops in a single place.)
- #126008 (Port `tests/run-make-fulldeps/issue-19371` to ui-fulldeps)
- #126032 (Update description of the `IsTerminal` example)
r? `@ghost`
`@rustbot` modify labels: rollup
Orphanck[old solver]: Consider opaque types to never cover type parameters
This fixes an oversight of mine in #117164. The change itself has already been FCP'ed.
This only affects the old solver, the next solver already correctly rejects the added test since #117164.
r? ``@lcnr``
Refactor `#[diagnostic::do_not_recommend]` support
This commit refactors the `#[do_not_recommend]` support in the old parser to also apply to projection errors and not only to selection errors. This allows the attribute to be used more widely.
Part of #51992
r? `@compiler-errors`
<!--
If this PR is related to an unstable feature or an otherwise tracked effort,
please link to the relevant tracking issue here. If you don't know of a related
tracking issue or there are none, feel free to ignore this.
This PR will get automatically assigned to a reviewer. In case you would like
a specific user to review your work, you can assign it to them by using
r? <reviewer name>
-->
Align `Term` methods with `GenericArg` methods, add `Term::expect_*`
* `Term::ty` -> `Term::as_type`.
* `Term::ct` -> `Term::as_const`.
* Adds `Term::expect_type` and `Term::expect_const`, and uses them in favor of `.ty().unwrap()`, etc.
I could also shorten these to `as_ty` and then do `GenericArg::as_ty` as well, but I do think the `as_` is important to signal that this is a conversion method, and not a getter, like `Const::ty` is.
r? types
Make `WHERE_CLAUSES_OBJECT_SAFETY` a regular object safety violation
#### The issue
In #50781, we have known about unsound `where` clauses in function arguments:
```rust
trait Impossible {}
trait Foo {
fn impossible(&self)
where
Self: Impossible;
}
impl Foo for &() {
fn impossible(&self)
where
Self: Impossible,
{}
}
// `where` clause satisfied for the object, meaning that the function now *looks* callable.
impl Impossible for dyn Foo {}
fn main() {
let x: &dyn Foo = &&();
x.impossible();
}
```
... which currently segfaults at runtime because we try to call a method in the vtable that doesn't exist. :(
#### What did u change
This PR removes the `WHERE_CLAUSES_OBJECT_SAFETY` lint and instead makes it a regular object safety violation. I choose to make this into a hard error immediately rather than a `deny` because of the time that has passed since this lint was authored, and the single (1) regression (see below).
That means that it's OK to mention `where Self: Trait` where clauses in your trait, but making such a trait into a `dyn Trait` object will report an object safety violation just like `where Self: Sized`, etc.
```rust
trait Impossible {}
trait Foo {
fn impossible(&self)
where
Self: Impossible; // <~ This definition is valid, just not object-safe.
}
impl Foo for &() {
fn impossible(&self)
where
Self: Impossible,
{}
}
fn main() {
let x: &dyn Foo = &&(); // <~ THIS is where we emit an error.
}
```
#### Regressions
From a recent crater run, there's only one crate that relies on this behavior: https://github.com/rust-lang/rust/pull/124305#issuecomment-2122381740. The crate looks unmaintained and there seems to be no dependents.
#### Further
We may later choose to relax this (e.g. when the where clause is implied by the supertraits of the trait or something), but this is not something I propose to do in this FCP.
For example, given:
```
trait Tr {
fn f(&self) where Self: Blanket;
}
impl<T: ?Sized> Blanket for T {}
```
Proving that some placeholder `S` implements `S: Blanket` would be sufficient to prove that the same (blanket) impl applies for both `Concerete: Blanket` and `dyn Trait: Blanket`.
Repeating here that I don't think we need to implement this behavior right now.
----
r? lcnr