The amdgpu-kernel calling convention was reverted in commit
f6b21e90d1 due to inactivity in the amdgpu
target.
Introduce a `gpu-kernel` calling convention that translates to
`ptx_kernel` or `amdgpu_kernel`, depending on the target that rust
compiles for.
Add basic Serde serialization capabilities to Stable MIR
This PR adds basic Serde serialization capabilities to Stable MIR. It is intentionally minimal (just wrapping all stable MIR types with a Serde `derive`), so that any important design decisions can be discussed before going further. A simple test is included with this PR to validate that JSON can actually be emitted.
## Notes
When I wrapped the Stable MIR error types in `compiler/stable_mir/src/error.rs`, it caused test failures (though I'm not sure why) so I backed those out.
## Future Work
So, this PR will support serializing basic stable MIR, but it _does not_ support serializing interned values beneath `Ty`s and `AllocId`s, etc... My current thinking about how to handle this is as follows:
1. Add new `visited_X` fields to the `Tables` struct for each interned category of interest.
2. As serialization is occuring, serialize interned values as usual _and_ also record the interned value we referenced in `visited_X`.
(Possibly) In addition, if an interned value recursively references other interned values, record those interned values as well.
3. Teach the stable MIR `Context` how to access the `visited_X` values and expose them with wrappers in `stable_mir/src/lib.rs` to users (e.g. to serialize and/or further analyze them).
### Pros
This approach does not commit to any specific serialization format regarding interned values or other more complex cases, which avoids us locking into any behaviors that may not be desired long-term.
### Cons
The user will need to manually handle serializing interned values.
### Alternatives
1. We can directly provide access to the underlying `Tables` maps for interned values; the disadvantage of this approach is that it either requires extra processing for users to filter out to only use the values that they need _or_ users may serialize extra values that they don't need. The advantage is that the implementation is even simpler. The other pros/cons are similar to the above.
2. We can directly serialize interned values by expanding them in-place. The pro is that this may make some basic inputs easier to consume. However, the cons are that there will need to be special provisions for dealing with cyclical values on both the producer and consumer _and_ global values will possibly need to be de-duplicated on the consumer side.
Remove the unstable `extern "wasm"` ABI (`wasm_abi` feature tracked
in #83788).
As discussed in https://github.com/rust-lang/rust/pull/127513#issuecomment-2220410679
and following, this ABI is a failed experiment that did not end
up being used for anything. Keeping support for this ABI in LLVM 19
would require us to switch wasm targets to the `experimental-mv`
ABI, which we do not want to do.
It should be noted that `Abi::Wasm` was internally used for two
things: The `-Z wasm-c-abi=legacy` ABI that is still used by
default on some wasm targets, and the `extern "wasm"` ABI. Despite
both being `Abi::Wasm` internally, they were not the same. An
explicit `extern "wasm"` additionally enabled the `+multivalue`
feature.
I've opted to remove `Abi::Wasm` in this patch entirely, instead
of keeping it as an ABI with only internal usage. Both
`-Z wasm-c-abi` variants are now treated as part of the normal
C ABI, just with different different treatment in
adjust_for_foreign_abi.
Unify intrinsics body handling in StableMIR
rust-lang/rust#120675 introduced a new mechanism to declare intrinsics which will potentially replace the rust-intrinsic ABI.
The new mechanism introduces a placeholder body and mark the intrinsic with `#[rustc_intrinsic_must_be_overridden]`.
In practice, this means that a backend should not generate code for the placeholder, and shim the intrinsic.
The new annotation is an internal compiler implementation, and it doesn't need to be exposed to StableMIR users.
In this PR, we unify the interface for intrinsics marked with `rustc_intrinsic_must_be_overridden` and intrinsics that do not have a body.
Fixes https://github.com/rust-lang/project-stable-mir/issues/79
r? ``@oli-obk``
cc: ``@momvart``
Add a new trait to retrieve StableMir definition Ty
We implement the trait only for definitions that should have a type. It's possible that I missed a few definitions, but we can add them later if needed.
Fixes https://github.com/rust-lang/project-stable-mir/issues/80
We implement the trait only for definitions that should have a type.
It's possible that I missed a few definitions, but we can add them later
if needed.
rust-lang/rust#120675 introduced a new mechanism to declare intrinsics
which will potentially replace the rust-intrinsic ABI.
The new mechanism introduces a placeholder body and mark the intrinsic
with #[rustc_intrinsic_must_be_overridden].
In practice, this means that backends should not generate code for the
placeholder, and shim the intrinsic.
The new annotation is an internal compiler implementation,
and it doesn't need to be exposed to StableMIR users.
In this PR, intrinsics marked with `rustc_intrinsic_must_be_overridden`
are handled the same way as intrinsics that do not have a body.
I've been experimenting with transforming the StableMIR to instrument
the code with potential UB checks. The modified body will only
be used by our analysis tool, however, constants in StableMIR must be
backed by rustc constants. Thus, I'm adding a few functions to build
constants, such as building string and other primitives.
This change introduces a new module to StableMIR named `abi` with
information from `rustc_target::abi` and `rustc_abi`, that allow users
to retrieve more low level information required to perform
bit-precise analysis.
The layout of a type can be retrieved via `Ty::layout`, and the instance
ABI can be retrieved via `Instance::fn_abi()`.
To properly handle errors while retrieve layout information, we had
to implement a few layout related traits.
- Remove `fn_sig()` from Instance.
- Change return value of `AssertMessage::description` to `Cow<>`.
- Add assert to instance `ty()`.
- Generalize uint / int type creation.