`Lit::from_included_bytes` calls `Lit::from_lit_kind`, but the two call
sites only need the resulting `token::Lit`, not the full `ast::Lit`.
This commit changes those call sites to use `LitKind::to_token_lit`,
which means `from_included_bytes` can be removed.
`MacArgs` is an enum with three variants: `Empty`, `Delimited`, and `Eq`. It's
used in two ways:
- For representing attribute macro arguments (e.g. in `AttrItem`), where all
three variants are used.
- For representing function-like macros (e.g. in `MacCall` and `MacroDef`),
where only the `Delimited` variant is used.
In other words, `MacArgs` is used in two quite different places due to them
having partial overlap. I find this makes the code hard to read. It also leads
to various unreachable code paths, and allows invalid values (such as
accidentally using `MacArgs::Empty` in a `MacCall`).
This commit splits `MacArgs` in two:
- `DelimArgs` is a new struct just for the "delimited arguments" case. It is
now used in `MacCall` and `MacroDef`.
- `AttrArgs` is a renaming of the old `MacArgs` enum for the attribute macro
case. Its `Delimited` variant now contains a `DelimArgs`.
Various other related things are renamed as well.
These changes make the code clearer, avoids several unreachable paths, and
disallows the invalid values.
Instead of `ast::Lit`.
Literal lowering now happens at two different times. Expression literals
are lowered when HIR is crated. Attribute literals are lowered during
parsing.
This commit changes the language very slightly. Some programs that used
to not compile now will compile. This is because some invalid literals
that are removed by `cfg` or attribute macros will no longer trigger
errors. See this comment for more details:
https://github.com/rust-lang/rust/pull/102944#issuecomment-1277476773
`BindingAnnotation` refactor
* `ast::BindingMode` is deleted and replaced with `hir::BindingAnnotation` (which is moved to `ast`)
* `BindingAnnotation` is changed from an enum to a tuple struct e.g. `BindingAnnotation(ByRef::No, Mutability::Mut)`
* Associated constants added for convenience `BindingAnnotation::{NONE, REF, MUT, REF_MUT}`
One goal is to make it more clear that `BindingAnnotation` merely represents syntax `ref mut` and not the actual binding mode. This was especially confusing since we had `ast::BindingMode`->`hir::BindingAnnotation`->`thir::BindingMode`.
I wish there were more symmetry between `ByRef` and `Mutability` (variant) naming (maybe `Mutable::Yes`?), and I also don't love how long the name `BindingAnnotation` is, but this seems like the best compromise. Ideas welcome.
- Rename `ast::Lit::token` as `ast::Lit::token_lit`, because its type is
`token::Lit`, which is not a token. (This has been confusing me for a
long time.)
reasonable because we have an `ast::token::Lit` inside an `ast::Lit`.
- Rename `LitKind::{from,to}_lit_token` as
`LitKind::{from,to}_token_lit`, to match the above change and
`token::Lit`.
Stringify non-shorthand visibility correctly
This makes `stringify!(pub(in crate))` evaluate to `pub(in crate)` rather than `pub(crate)`, matching the behavior before the `crate` shorthand was removed. Further, this changes `stringify!(pub(in super))` to evaluate to `pub(in super)` rather than the current `pub(super)`. If the latter is not desired (it is _technically_ breaking), it can be undone.
Fixes#99981
`@rustbot` label +C-bug +regression-from-stable-to-beta +T-compiler
A `TokenStream` contains a `Lrc<Vec<(TokenTree, Spacing)>>`. But this is
not quite right. `Spacing` makes sense for `TokenTree::Token`, but does
not make sense for `TokenTree::Delimited`, because a
`TokenTree::Delimited` cannot be joined with another `TokenTree`.
This commit fixes this problem, by adding `Spacing` to `TokenTree::Token`,
changing `TokenStream` to contain a `Lrc<Vec<TokenTree>>`, and removing the
`TreeAndSpacing` typedef.
The commit removes these two impls:
- `impl From<TokenTree> for TokenStream`
- `impl From<TokenTree> for TreeAndSpacing`
These were useful, but also resulted in code with many `.into()` calls
that was hard to read, particularly for anyone not highly familiar with
the relevant types. This commit makes some other changes to compensate:
- `TokenTree::token()` becomes `TokenTree::token_{alone,joint}()`.
- `TokenStream::token_{alone,joint}()` are added.
- `TokenStream::delimited` is added.
This results in things like this:
```rust
TokenTree::token(token::Semi, stmt.span).into()
```
changing to this:
```rust
TokenStream::token_alone(token::Semi, stmt.span)
```
This makes the type of the result, and its spacing, clearer.
These changes also simplifies `Cursor` and `CursorRef`, because they no longer
need to distinguish between `next` and `next_with_spacing`.
The change was "Show invisible delimiters (within comments) when pretty
printing". It's useful to show these delimiters, but is a breaking
change for some proc macros.
Fixes#97608.
Begin fixing all the broken doctests in `compiler/`
Begins to fix#95994.
All of them pass now but 24 of them I've marked with `ignore HELP (<explanation>)` (asking for help) as I'm unsure how to get them to work / if we should leave them as they are.
There are also a few that I marked `ignore` that could maybe be made to work but seem less important.
Each `ignore` has a rough "reason" for ignoring after it parentheses, with
- `(pseudo-rust)` meaning "mostly rust-like but contains foreign syntax"
- `(illustrative)` a somewhat catchall for either a fragment of rust that doesn't stand on its own (like a lone type), or abbreviated rust with ellipses and undeclared types that would get too cluttered if made compile-worthy.
- `(not-rust)` stuff that isn't rust but benefits from the syntax highlighting, like MIR.
- `(internal)` uses `rustc_*` code which would be difficult to make work with the testing setup.
Those reason notes are a bit inconsistently applied and messy though. If that's important I can go through them again and try a more principled approach. When I run `rg '```ignore \(' .` on the repo, there look to be lots of different conventions other people have used for this sort of thing. I could try unifying them all if that would be helpful.
I'm not sure if there was a better existing way to do this but I wrote my own script to help me run all the doctests and wade through the output. If that would be useful to anyone else, I put it here: https://github.com/Elliot-Roberts/rust_doctest_fixing_tool
Overhaul `MacArgs`
Motivation:
- Clarify some code that I found hard to understand.
- Eliminate one use of three places where `TokenKind::Interpolated` values are created.
r? `@petrochenkov`
The value in `MacArgs::Eq` is currently represented as a `Token`.
Because of `TokenKind::Interpolated`, `Token` can be either a token or
an arbitrary AST fragment. In practice, a `MacArgs::Eq` starts out as a
literal or macro call AST fragment, and then is later lowered to a
literal token. But this is very non-obvious. `Token` is a much more
general type than what is needed.
This commit restricts things, by introducing a new type `MacArgsEqKind`
that is either an AST expression (pre-lowering) or an AST literal
(post-lowering). The downside is that the code is a bit more verbose in
a few places. The benefit is that makes it much clearer what the
possibilities are (though also shorter in some other places). Also, it
removes one use of `TokenKind::Interpolated`, taking us a step closer to
removing that variant, which will let us make `Token` impl `Copy` and
remove many "handle Interpolated" code paths in the parser.
Things to note:
- Error messages have improved. Messages like this:
```
unexpected token: `"bug" + "found"`
```
now say "unexpected expression", which makes more sense. Although
arbitrary expressions can exist within tokens thanks to
`TokenKind::Interpolated`, that's not obvious to anyone who doesn't
know compiler internals.
- In `parse_mac_args_common`, we no longer need to collect tokens for
the value expression.
Using an obviously-placeholder syntax. An RFC would still be needed before this could have any chance at stabilization, and it might be removed at any point.
But I'd really like to have it in nightly at least to ensure it works well with try_trait_v2, especially as we refactor the traits.
This commit rearranges the `match`. The new code avoids testing for
`MacArgs::Eq` twice, at the cost of repeating the `self.print_path()`
call. I think this is worthwhile because it puts the `match` in a more
standard and readable form.
Parse inner attributes on inline const block
According to https://github.com/rust-lang/rust/pull/84414#issuecomment-826150936, inner attributes are intended to be supported *"in all containers for statements (or some subset of statements)"*.
This PR adds inner attribute parsing and pretty-printing for inline const blocks (https://github.com/rust-lang/rust/issues/76001), which contain statements just like an unsafe block or a loop body.
```rust
let _ = const {
#![allow(...)]
let x = ();
x
};
```
It's only needed for macro expansion, not as a general element in the
AST. This commit removes it, adds `NtOrTt` for the parser and macro
expansion cases, and renames the variants in `NamedMatch` to better
match the new type.
Factor convenience functions out of main printer implementation
The pretty printer in rustc_ast_pretty has a section of methods commented "Convenience functions to talk to the printer". This PR pulls those out to a separate module. This leaves pp.rs with only the minimal API that is core to the pretty printing algorithm.
I found this separation to be helpful in https://github.com/dtolnay/prettyplease because it makes clear when changes are adding some fundamental new capability to the pretty printer algorithm vs just making it more convenient to call some already existing functionality.
The `print_expr` method already places an `ibox(INDENT_UNIT)` around
every expr that gets printed. Some exprs were then using `self.head`
inside of that, which does its own `cbox(INDENT_UNIT)`, resulting in two
levels of indentation:
while true {
stuff;
}
This commit fixes those cases to produce the expected single level of
indentation within every expression containing a block.
while true {
stuff;
}
Previously the pretty printer would compute indentation always relative
to whatever column a block begins at, like this:
fn demo(arg1: usize,
arg2: usize);
This is never the thing to do in the dominant contemporary Rust style.
Rustfmt's default and the style used by the vast majority of Rust
codebases is block indentation:
fn demo(
arg1: usize,
arg2: usize,
);
where every indentation level is a multiple of 4 spaces and each level
is indented relative to the indentation of the previous line, not the
position that the block starts in.
Render more readable macro matcher tokens in rustdoc
Follow-up to #92334.
This PR lifts some of the token rendering logic from https://github.com/dtolnay/prettyplease into rustdoc so that even the matchers for which a source code snippet is not available (because they are macro-generated, or any other reason) follow some baseline good assumptions about where the tokens in the macro matcher are appropriate to space.
The below screenshots show an example of the difference using one of the gnarliest macros I could find. Some things to notice:
- In the **before**, notice how a couple places break in between `$(....)`↵`*`, which is just about the worst possible place that it could break.
- In the **before**, the lines that wrapped are weirdly indented by 1 space of indentation relative to column 0. In the **after**, we use the typical way of block indenting in Rust syntax which is put the open/close delimiters on their own line and indent their contents by 4 spaces relative to the previous line (so 8 spaces relative to column 0, because the matcher itself is indented by 4 relative to the `macro_rules` header).
- In the **after**, macro_rules metavariables like `$tokens:tt` are kept together, which is how just about everybody writing Rust today writes them.
## Before
![Screenshot from 2022-01-14 13-05-53](https://user-images.githubusercontent.com/1940490/149585105-1f182b78-751f-421f-a234-9dbc04fa3bbd.png)
## After
![Screenshot from 2022-01-14 13-06-04](https://user-images.githubusercontent.com/1940490/149585118-d4b52ea7-3e67-4b6e-a12b-31dfb8172f86.png)
r? `@camelid`
PrintStackElems with pbreak=PrintStackBreak::Fits always carried a
meaningless value offset=0. We can combine the two types PrintStackElem
+ PrintStackBreak into one PrintFrame enum that stores offset only for
Broken frames.
The pretty printer algorithm involves 2 VecDeques: a ring-buffer of
tokens and a deque of ring-buffer indices. Confusingly, those two deques
were being grown in opposite directions for no good reason. Ring-buffer
pushes would go on the "back" of the ring-buffer (i.e. higher indices)
while scan_stack pushes would go on the "front" (i.e. lower indices).
This commit flips the scan_stack accesses to grow the scan_stack and
ring-buffer in the same direction, where push does the same
operation as a Vec push i.e. inserting on the high-index end.
Pretty printer algorithm revamp step 2
This PR follows #92923 as a second chunk of modernizations backported from https://github.com/dtolnay/prettyplease into rustc_ast_pretty.
I've broken this up into atomic commits that hopefully are sensible in isolation. At every commit, the pretty printer is compilable and has runtime behavior that is identical to before and after the PR. None of the refactoring so far changes behavior.
The general theme of this chunk of commits is: the logic in the old pretty printer is doing some very basic things (pushing and popping tokens on a ring buffer) but expressed in a too-low-level way that I found makes it quite complicated/subtle to reason about. There are a number of obvious invariants that are "almost true" -- things like `self.left == self.buf.offset` and `self.right == self.buf.offset + self.buf.data.len()` and `self.right_total == self.left_total + self.buf.data.sum()`. The reason these things are "almost true" is the implementation tends to put updating one side of the invariant unreasonably far apart from updating the other side, leaving the invariant broken while unrelated stuff happens in between. The following code from master is an example of this:
e5e2b0be26/compiler/rustc_ast_pretty/src/pp.rs (L314-L317)
In this code the `advance_right` is reserving an entry into which to write a next token on the right side of the ring buffer, the `check_stack` is doing something totally unrelated to the right boundary of the ring buffer, and the `scan_push` is actually writing the token we previously reserved space for. Much of what this PR is doing is rearranging code to shrink the amount of stuff in between when an invariant is broken to when it is restored, until the whole thing can be factored out into one indivisible method call on the RingBuffer type.
The end state of the PR is that we can entirely eliminate `self.left` (because it's now just equal to `self.buf.offset` always) and `self.right` (because it's equal to `self.buf.offset + self.buf.data.len()` always) and the whole `Token::Eof` state which used to be the value of tokens that have been reserved space for but not yet written.
I found without these changes the pretty printer implementation to be hard to reason about and I wasn't able to confidently introduce improvements like trailing commas in `prettyplease` until after this refactor. The logic here is 43 years old at this point (Graydon translated it as directly as possible from the 1979 pretty printing paper) and while there are advantages to following the paper as closely as possible, in `prettyplease` I decided if we're going to adapt the algorithm to work better for Rust syntax, it was worthwhile making it easier to follow than the original.
Move expr- and item-related pretty printing functions to modules
Currently *compiler/rustc_ast_pretty/src/pprust/state.rs* is 2976 lines on master. The `tidy` limit is 3000, which is blocking #92243.
This PR adds a `mod expr;` and `mod item;` to move logic related to those AST nodes out of the single huge file.
ProjectionPredicate should be able to handle both associated types and consts so this adds the
first step of that. It mainly just pipes types all the way down, not entirely sure how to handle
consts, but hopefully that'll come with time.
Remove deprecated LLVM-style inline assembly
The `llvm_asm!` was deprecated back in #87590 1.56.0, with intention to remove
it once `asm!` was stabilized, which already happened in #91728 1.59.0. Now it
is time to remove `llvm_asm!` to avoid continued maintenance cost.
Closes#70173.
Closes#92794.
Closes#87612.
Closes#82065.
cc `@rust-lang/wg-inline-asm`
r? `@Amanieu`
Rename Printer constructor from mk_printer() to Printer::new()
The original naming is left over from 2011 which was before impl blocks and associated functions existed.
21313d623a/src/comp/pretty/pp.rs
Fix unclosed boxes in pretty printing of TraitAlias
This was causing trait aliases to not even render at all in stringified / pretty printed output.
```rust
macro_rules! repro {
($item:item) => {
stringify!($item)
};
}
fn main() {
println!("{:?}", repro!(pub trait Trait<T> = Sized where T: 'a;));
}
```
Before: `""`
After: `"pub trait Trait<T> = Sized where T: 'a;"`
The fix is copied from how `head`/`end` for `ItemKind::Use`, `ItemKind::ExternCrate`, and `ItemKind::Mod` are all done in the pretty printer:
dd3ac41495/compiler/rustc_ast_pretty/src/pprust/state.rs (L1178-L1184)
Remove &self from PrintState::to_string
The point of `PrintState::to_string` is to create a `State` and evaluate the caller's closure on it:
e9fbe79292/compiler/rustc_ast_pretty/src/pprust/state.rs (L868-L872)
Making the caller *also* construct and pass in a `State`, which is then ignored, was confusing.
Fix spacing and ordering of words in pretty printed Impl
Follow-up to #92238 fixing one of the FIXMEs.
```rust
macro_rules! repro {
($item:item) => {
stringify!($item)
};
}
fn main() {
println!("{}", repro!(impl<T> Struct<T> {}));
println!("{}", repro!(impl<T> const Trait for T {}));
}
```
Before: `impl <T> Struct<T> {}`
After: `impl<T> Struct<T> {}`
Before: `impl const <T> Trait for T {}` 😿
After: `impl<T> const Trait for T {}`
Fix whitespace in pretty printed PatKind::Range
Follow-up to #92238 fixing one of the FIXMEs.
```rust
macro_rules! repro {
($pat:pat) => {
stringify!($pat)
};
}
fn main() {
println!("{}", repro!(0..=1));
}
```
Before: `0 ..=1`
After: `0..=1`
The canonical spacing applied by rustfmt has no space after the lower expr. Rustc's parser diagnostics also do not put a space there:
df96fb166f/compiler/rustc_parse/src/parser/pat.rs (L754)
Print space after formal generic params in fn type
Follow-up to #92238 fixing one of the FIXMEs.
```rust
macro_rules! repro {
($ty:ty) => {
stringify!($ty)
};
}
fn main() {
println!("{}", repro!(for<'a> fn(&'a u8)));
}
```
Before: `for<'a>fn(&'a u8)`
After: `for<'a> fn(&'a u8)`
The pretty printer's `print_formal_generic_params` already prints formal generic params correctly with a space, we just need to call it when printing BareFn types instead of reimplementing the printing incorrectly without a space.
83b15bfe1c/compiler/rustc_ast_pretty/src/pprust/state.rs (L1394-L1400)
Pretty print empty blocks as {}
**Example:**
```rust
macro_rules! p {
($e:expr) => {
println!("{}", stringify!($e));
};
($i:item) => {
println!("{}", stringify!($i));
};
}
fn main() {
p!(if true {});
p!(struct S {});
}
```
**Before:**
```console
if true { }
struct S {
}
```
**After:**
```console
if true {}
struct S {}
```
This affects [`dbg!`](https://doc.rust-lang.org/std/macro.dbg.html), as well as ecosystem uses of stringify such as in [`anyhow::ensure!`](https://docs.rs/anyhow/1/anyhow/macro.ensure.html). Printing a `{ }` in today's heavily rustfmt'd world comes out looking jarring/sloppy.
TraitKind -> Trait
TyAliasKind -> TyAlias
ImplKind -> Impl
FnKind -> Fn
All `*Kind`s in AST are supposed to be enums.
Tuple structs are converted to braced structs for the types above, and fields are reordered in syntactic order.
Also, mutable AST visitor now correctly visit spans in defaultness, unsafety, impl polarity and constness.
This reverts commit 059b68dd67.
Note that this was manually adjusted to retain some of the refactoring
introduced by commit 059b68dd67, so that it could
likewise retain the correction introduced in commit
5b4bc05fa5
rfc3052 followup: Remove authors field from Cargo manifests
Since RFC 3052 soft deprecated the authors field, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information for contributors, we may as well
remove it from crates in this repo.
Since RFC 3052 soft deprecated the authors field anyway, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information, we should remove it from
crates in this repo.
Re-add support for parsing (and pretty-printing) inner-attributes in match body
Re-add support for parsing (and pretty-printing) inner-attributes within body of a `match`.
In other words, we can do `match EXPR { #![inner_attr] ARM_1 ARM_2 ... }` again.
I believe this unbreaks the only four crates that crater flagged as broken by PR #83312.
(I am putting this up so that the lang-team can check it out and decide whether it changes their mind about what to do regarding PR #83312.)
In addition to making the output look nicer for all crates, this also
aligns the pretty-printing output with what the `rental` crate expects.
This will allow us to eventually disable a backwards-compat hack in a
follow-up PR.
In other words, we can do `match EXPR { #![inner_attr] ARM_1 ARM_2 ... }` again.
I believe this unbreaks the only four crates that crater flagged as broken by PR 83312.
(I am putting this up so that the lang-team can check it out and decide whether
it changes their mind about what to do regarding PR 83312.)
Found with https://github.com/est31/warnalyzer.
Dubious changes:
- Is anyone else using rustc_apfloat? I feel weird completely deleting
x87 support.
- Maybe some of the dead code in rustc_data_structures, in case someone
wants to use it in the future?
- Don't change rustc_serialize
I plan to scrap most of the json module in the near future (see
https://github.com/rust-lang/compiler-team/issues/418) and fixing the
tests needed more work than I expected.
TODO: check if any of the comments on the deleted code should be kept.
This currently creates a field which is always false on GenericParamDefKind for future use when
consts are permitted to have defaults
Update const_generics:default locations
Previously just ignored them, now actually do something about them.
Fix using type check instead of value
Add parsing
This adds all the necessary changes to lower const-generics defaults from parsing.
Change P<Expr> to AnonConst
This matches the arguments passed to instantiations of const generics, and makes it specific to
just anonymous constants.
Attempt to fix lowering bugs
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
ast: Keep expansion status for out-of-line module items
I.e. whether a module `mod foo;` is already loaded from a file or not.
This is a pre-requisite to correctly treating inner attributes on such modules (https://github.com/rust-lang/rust/issues/81661).
With this change AST structures for `mod` items diverge even more for AST structure for the crate root, which previously used `ast::Mod`.
Therefore this PR removes `ast::Mod` from `ast::Crate` in the first commit, these two things are sufficiently different from each other, at least at syntactic level.
Customization points for visiting a "`mod` item or crate root" were also removed from AST visitors (`fn visit_mod`).
`ast::Mod` itself was refactored away in the second commit in favor of `ItemKind::Mod(Unsafe, ModKind)`.
Ensure valid TraitRefs are created for GATs
This fixes `ProjectionTy::trait_ref` to use the correct substs. Places that need all of the substs have been updated to not use `trait_ref`.
r? ````@jackh726````
Crate root is sufficiently different from `mod` items, at least at syntactic level.
Also remove customization point for "`mod` item or crate root" from AST visitors.
- Adds optional default values to const generic parameters in the AST
and HIR
- Parses these optional default values
- Adds a `const_generics_defaults` feature gate
`PatKind::Ref(PatKind::Ident(BindingMode::ByValue(Mutability::Mut), ..), ..)`
is an AST representing `&(mut ident)`. It was errorneously printed as
`&mut ident` which reparsed into a syntactically different AST.
This affected help diagnostics in the parser.
Make `_` an expression, to discard values in destructuring assignments
This is the third and final step towards implementing destructuring assignment (RFC: rust-lang/rfcs#2909, tracking issue: #71126). This PR is the third and final part of #71156, which was split up to allow for easier review.
With this PR, an underscore `_` is parsed as an expression but is allowed *only* on the left-hand side of a destructuring assignment. There it simply discards a value, similarly to the wildcard `_` in patterns. For instance,
```rust
(a, _) = (1, 2)
```
will simply assign 1 to `a` and discard the 2. Note that for consistency,
```
_ = foo
```
is also allowed and equivalent to just `foo`.
Thanks to ````@varkor```` who helped with the implementation, particularly around pre-expansion gating.
r? ````@petrochenkov````
cleanup: Remove `ParseSess::injected_crate_name`
Its only remaining use is in pretty-printing where the necessary information can be easily re-computed.
Fix rustc_ast_pretty print_qpath resulting in invalid macro input
related https://github.com/rust-lang/rust/issues/76874 (third case)
### Issue:
The input for a procedural macro is incorrect, for the rust code:
```rust
mod m {
pub trait Tr {
type Ts: super::Tu;
}
}
trait Tu {
fn dummy() { }
}
#[may_proc_macro]
fn foo() {
<T as m::Tr>::Ts::dummy();
}
```
the macro will get the input:
```rust
fn foo() {
<T as m::Tr>::dummy();
}
```
Thus `Ts` has disappeared.
### Fix:
This is due to invalid pretty print of qpath. This PR fix it.