Consolidate type system const evaluation under `traits::evaluate_const`
Part of #130704Fixes#128232Fixes#118545
Removes `ty::Const::{normalize_internal, eval_valtree}` and `InferCtxt::(try_)const_eval_resolve`, consolidating the associated logic into `evaluate_const` in `rustc_trait_selection`. This results in an API for `ty::Const` that is free of any normalization/evaluation functions that would be incorrect to use under `min_generic_const_args`/`associated_const_equality`/`generic_const_exprs` or, more generally, that would be incorrect to use in the presence of generic type system constants.
Moving this logic to `rustc_trait_selection` and out of `rustc_middle` is also a pre-requisite for ensuring that we do not evaluate constants whose where clauses do not hold.
From this point it should be relatively simple (hah) to implement more complex normalization of type system constants such as: checking wf'ness before invoking CTFE machinery, or being able to normalize const aliases that still refer to generic parameters.
r? `@compiler-errors`
test(configure): cover `parse_args` in `src/bootstrap/configure.py`
I was reading `src/bootstrap/configure.py` and `parse_args` function there seems complex. So I added some tests to cover it and prevent regressions.
Update mdbook to 0.4.42
This updates mdbook to 0.4.42
Changelog: https://github.com/rust-lang/mdBook/blob/master/CHANGELOG.md#mdbook-0441
There were some significant changes that I would like to get early testing on.
This also updates rust-by-example which was required due to an update to the theme file.
It will be slower to build and produce larger artifacts, but hopefully
it will help catch debuginfo regressions sooner, especially for problems
that LLVM assertions would uncover.
Only copy, rename and link `llvm-objcopy` if llvm tools are enabled
Fixes#132719.
cc `@bjorn3` who reported the bootstrapping problem for cg_clif.
cc `@davidtwco` in case this might be problematic for linux -> macOS cross-compile builds, but seems very unlikely.
cc `@albertlarsan68` (co-reviewed #131405)
r? bootstrap
Stabilize Arm64EC inline assembly
This stabilizes inline assembly for Arm64EC ("Emulation Compatible").
Corresponding reference PR: https://github.com/rust-lang/reference/pull/1653
---
From the requirements of stabilization mentioned in https://github.com/rust-lang/rust/issues/93335
> Each architecture needs to be reviewed before stabilization:
> - It must have clobber_abi.
Done in https://github.com/rust-lang/rust/pull/131332.
> - It must be possible to clobber every register that is normally clobbered by a function call.
This is possible from the time of the initial implementation.
> - Generally review that the exposed register classes make sense.
The registers available in this target are a subset of those available in the AArch64 inline assembly which is already stable.
The following registers cannot be used in Arm64EC compared to AArch64:
- `x13`, `x14`, `x23`, `x24`, `x28` (register class: `reg`)
- `v[16-31]` (register class: `vreg`)
- `p[0-15]`, `ffr` (clobber-only register class `preg`)
These are disallowed by the ABI (see also [abi docs](https://learn.microsoft.com/en-us/cpp/build/arm64ec-windows-abi-conventions?view=msvc-170#register-mapping) for `reg`/`vreg` and https://github.com/rust-lang/rust/pull/131332#issuecomment-2401189142 for `preg`).
Although not listed in the above requirements, preserves_flags is also implemented and the same as AArch64.
---
cc `@dpaoliello`
r? `@Amanieu`
`@rustbot` label O-windows O-AArch64 +A-inline-assembly +T-lang -T-compiler +needs-fcp
Update minifer version to `0.3.2`
This version fixes a few lints but the main change is that it makes `clap` dependency optional since it's only used for the binary.
r? `@notriddle`
Update grammar in wasm-c-abi's compiler flag documentation
This PR adjusts the grammar of the `wasm-c-abi` compiler flag documentation. See the inline comments within the PR for details.
interpret: get_alloc_info: also return mutability
This will be needed for https://github.com/rust-lang/miri/pull/3971
This then tuned into a larger refactor where we introduce a new type for the `get_alloc_info` return data, and we move some code to methods on `GlobalAlloc` to avoid duplicating it between the validity check and `get_alloc_info`.
Stabilize s390x inline assembly
This stabilizes inline assembly for s390x (SystemZ).
Corresponding reference PR: https://github.com/rust-lang/reference/pull/1643
---
From the requirements of stabilization mentioned in https://github.com/rust-lang/rust/issues/93335
> Each architecture needs to be reviewed before stabilization:
> - It must have clobber_abi.
Done in https://github.com/rust-lang/rust/pull/130630.
> - It must be possible to clobber every register that is normally clobbered by a function call.
Done in the PR that added support for clobber_abi.
> - Generally review that the exposed register classes make sense.
The followings can be used as input/output:
- `reg` (`r[0-10]`, `r[12-14]`): General-purpose register
- `reg_addr` (`r[1-10]`, `r[12-14]`): General-purpose register except `r0` which is evaluated as zero in an address context
This class is needed because `r0`, which may be allocated when using the `reg` class, cannot be used as a register in certain contexts. This is identical to the `a` constraint in LLVM and GCC. See https://github.com/rust-lang/rust/pull/119431 for details.
- `freg` (`f[0-15]`): Floating-point register
The followings are clobber-only:
- `vreg` (`v[0-31]`): Vector register
Technically `vreg` should be able to accept `#[repr(simd)]` types as input/output if the unstable `vector` target feature added is enabled, but `core::arch` has no s390x vector type and both `#[repr(simd)]` and `core::simd` are unstable. Everything related is unstable, so the fact that this is currently a clobber-only should not be considered a stabilization blocker. (https://github.com/rust-lang/rust/issues/130869 tracks unstable stuff here)
- `areg` (`a[2-15]`): Access register
All of the above register classes except `reg_addr` are needed for `clobber_abi`.
The followings cannot be used as operands for inline asm (see also [getReservedRegs](https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/SystemZ/SystemZRegisterInfo.cpp#L258-L282) and [SystemZELFRegisters](https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/SystemZ/SystemZRegisterInfo.h#L107-L128) in LLVM):
- `r11`: frame pointer
- `r15`: stack pointer
- `a0`, `a1`: Reserved for system use
- `c[0-15]` (control register) Reserved by the kernel
Although not listed in the above requirements, `preserves_flags` is implemented in https://github.com/rust-lang/rust/pull/111331.
---
cc ``@uweigand``
r? ``@Amanieu``
``@rustbot`` label +O-SystemZ +A-inline-assembly
use `download-rustc="if-unchanged"` as a global default
If `download-rustc` isn't explicitly set and the source is Git-managed, it should be totally okay to utilize "if-unchanged" behaviour. The "dist" profile already sets `download-rustc` to `false`, so this shouldn’t impact anything on CI.
This also resolves an unhandled case where `bootstrap` unexpectedly panics if `"if-unchanged"` was used with a non-Git source. Now we exits gracefully with an error message pointing the problem.
Simplify the internal API for declaring command-line options
The internal APIs for declaring command-line options are old, and intimidatingly complex. This PR replaces them with a single function that takes explicit `stability` and `kind` arguments, making it easier to see how each option is handled, and whether it is treated as stable or unstable.
We also don't appear to have any tests for the output of `rustc --help` and similar, so I've added a run-make test to verify that this PR doesn't change any output. (There is already a similar run-make test for rustdoc's help output.)
---
The librustdoc changes are simply adjusting to updated compiler APIs; no functional change intended.
---
A side-effect of these changes is that rustfmt can once again format the entirety of these option declaration lists, which it was not doing before.
"whenever possible" means applying it if `download-rustc` isn't explicitly set and
the source is Git-managed.
Signed-off-by: onur-ozkan <work@onurozkan.dev>
Fix `librustdoc/scrape_examples.rs` formatting
Still working on the intra-doc link feature. This time I encountered this file and it bothered me a bit so fixing formatting. :3
r? ````@notriddle````
bootstrap: Print better message if lock pid isn't available
Not actually sure why, but sometimes the PID isn't available so we print
```
WARNING: build directory locked by process , waiting for lock
```
This makes the message a bit nicer in this case
Add `{ignore,needs}-{rustc,std}-debug-assertions` directive support
Add `{ignore,needs}-{rustc,std}-debug-assertions` compiletest directives and retire the old `{ignore,only}-debug` directives. The old `{ignore,only}-debug` directives were ambiguous because you could have std built with debug assertions but rustc not built with debug assertions or vice versa. If we want to support the use case of controlling test run based on if rustc was built with debug assertions, then having `{ignore,only}-debug` will be very confusing.
cc ````@matthiaskrgr````
Closes#123987.
r? bootstrap (or compiler tbh)
Basic inline assembly support for SPARC and SPARC64
This implements asm_experimental_arch (tracking issue https://github.com/rust-lang/rust/issues/93335) for SPARC and SPARC64.
This PR includes:
- General-purpose registers `r[0-31]` (`reg` register class, LLVM/GCC constraint `r`)
Supported types: i8, i16, i32, i64 (SPARC64-only)
Aliases: `g[0-7]` (`r[0-7]`), `o[0-7]` (`r[8-15]`), `l[0-7]` (`r[16-23]`), `i[0-7]` (`r[24-31]`)
- `y` register (clobber-only, needed for clobber_abi)
- preserves_flags: Integer condition codes (`icc`, `xcc`) and floating-point condition codes (`fcc*`)
The following are *not* included:
- 64-bit integer support on SPARC-V8+'s global or out registers (`g[0-7]`, `o[0-7]`): GCC's `h` constraint (it seems that there is no corresponding constraint in LLVM?)
- Floating-point registers (LLVM/GCC constraint `e`/`f`):
I initially tried to implement this, but postponed it for now because there seemed to be several parts in LLVM that behaved differently than in the LangRef's description.
- clobber_abi: Support for floating-point registers is needed.
Refs:
- LLVM
- Reserved registers https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp#L52
- Register definitions https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/SparcRegisterInfo.td
- Supported constraints https://llvm.org/docs/LangRef.html#supported-constraint-code-list
- GCC
- Reserved registers 63b6967b06/gcc/config/sparc/sparc.h (L633-L658)
- Supported constraints https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html
- SPARC ISA/ABI
- (64-bit ISA) The SPARC Architecture Manual, Version 9
(32-bit ISA) The SPARC Architecture Manual, Version 8
(64-bit ABI) System V Application Binary Interface SPARC Version 9 Processor Supplement, Rev 1.35
(32-bit ABI) System V Application Binary Interface SPARC Processor Supplement, Third Edition
The above docs can be downloaded from https://sparc.org/technical-documents
- (32-bit V8+ ABI) The V8+ Technical Specification
https://temlib.org/pub/SparcStation/Standards/V8plus.pdf
cc `@thejpster` (sparc-unknown-none-elf target maintainer)
(AFAIK, other sparc/sprac64 targets don't have target maintainers)
r? `@Amanieu`
`@rustbot` label +O-SPARC +A-inline-assembly
bootstrap: add quoting support to avoid splitting
With this change, it is now possible to pass quotes to the configure script, such as
`./configure.py --set=target.\"thumbv8m.main-none-eabi\".linker=/linker`
or
`./configure.py '--set=target."thumbv8m.main-none-eabi".linker=/linker'`
, which will treat `thumbv8.main-none-eabi` as a whole part. Currently, the string would be split into two elements: `thumbv8`, and `main-none-eabi`.
The approach taken is to perform custom splitting instead of using `str.split()` and then repairing the split. Also, There are numerous corner cases not handled: the custom split doesn't differentiate between single quotes or double quotes, so it is perfectly possible to pass `./configure.py --set=target.\"thumbv8m.main-none-eabi\'.linker=/linker` and the behaviour would be the same as with all double quotes or single quotes.
As for the code, i'm unsure on whether to delimit strings with double or single quotes. I've seen both single quotes and double quotes used to delimit strings, like in
```py
err("Option '{}' provided more than once".format(key))
```
and this a handful of lines down:
```py
if option.name == 'sccache':
set('llvm.ccache', 'sccache', config)
```
Please advise on the wanted one.
Fixes#130602
r? `@onur-ozkan`
Thanks in advance for the feedback!
With this change, it is now possible to pass quotes to the configure
script, such as
`./configure.py --set=target.\"thumbv8m.main-none-eabi\".linker=/linker`
, which will treat `thumbv8.main-none-eabi` as a whole part. Currently,
the string would be split into two elements: `thumbv8`, and
`main-none-eabi`.
make char::is_whitespace unstably const
I am adding this to the existing https://github.com/rust-lang/rust/issues/132241 feature gate, since `is_digit` and `is_whitespace` seem similar enough that one can group them together.
Remove the `wasm32-wasi` target from rustc
This commit is the final step in the journey of renaming the historical `wasm32-wasi` target in the Rust compiler to `wasm32-wasip1`. Various steps in this journey so far have been:
* 2023-04-03: rust-lang/compiler-team#607 - initial proposal for this rename
* 2024-11-27: rust-lang/compiler-team#695 - amended schedule/procedure for rename
* 2024-01-29: rust-lang/rust#120468 - initial introduction of `wasm32-wasip1`
* 2024-06-18: rust-lang/rust#126662 - warn on usage of `wasm32-wasi`
* 2024-11-08: this PR - remove the `wasm32-wasi` target
The full transition schedule is in [this comment][comment] and is summarized with:
* 2024-05-02: Rust 1.78 released with `wasm32-wasip1` target
* 2024-09-05: Rust 1.81 released warning on usage of `wasm32-wasi`
* 2025-01-09: Rust 1.84 to be released without the `wasm32-wasi` target
This means that support on stable for the replacement target of `wasm32-wasip1` has currently been available for 6 months. Users have already seen warnings on stable for 2 months about usage of `wasm32-wasi` and stable users have another 2 months of warnings before the target is removed from stable.
This commit is intended to be the final step in this transition so the source tree should no longer mention `wasm32-wasi` except in historical reference to the older name of the `wasm32-wasip1` target.
[comment]: https://github.com/rust-lang/rust/pull/120468#issuecomment-1977878747
bootstrap/codegen_ssa: ship llvm-strip and use it for -Cstrip
Fixes#131206.
- Includes `llvm-strip` (a symlink to `llvm-objcopy`) in the compiler dist artifact so that it can be used for `-Cstrip` instead of the system tooling.
- Uses `llvm-strip` instead of `/usr/bin/strip` for macOS. macOS needs a specific linker and the system one is preferred, hence #130781 but that doesn't work when cross-compiling, so use the `llvm-strip` utility instead.
cc #123151
Do not filter empty lint passes & re-do CTFE pass
Some structs implement `LintPass` without having a `Lint` associated with them #125116 broke that behaviour by filtering them out. This PR ensures that lintless passes are not filtered out.
rustc_codegen_llvm: Add a new 'pc' option to branch-protection
Add a new 'pc' option to -Z branch-protection for aarch64 that enables the use of PC as a diversifier in PAC branch protection code.
When the pauth-lr target feature is enabled in combination with -Z branch-protection=pac-ret,pc, the new 9.5-a instructions (pacibsppc, retaasppc, etc) will be generated.
Remove unnecessary pub enum glob-imports from `rustc_middle::ty`
We used to have an idiom in the compiler where we'd prefix or suffix all the variants of an enum, for example `BoundRegionKind`, with something like `Br`, and then *glob-import* that enum variant directly.
`@noratrieb` brought this up, and I think that it's easier to read when we just use the normal style `EnumName::Variant`.
This PR is a bit large, but it's just naming.
The only somewhat opinionated change that this PR does is rename `BorrowKind::Imm` to `BorrowKind::Immutable` and same for the other variants. I think these enums are used sparingly enough that the extra length is fine.
r? `@noratrieb` or reassign
Clippy: Move some attribute lints to be early pass (post expansion)
r? ```@xFrednet```
As a side effect it removes a duplicated warning on line 53 of the `allow_attributes` test. I discussed this with ```@xFrednet``` , and it's mainly to support the attribute rework https://github.com/rust-lang/rust/issues/131229
[rustdoc] Fix `--show-coverage` when JSON output format is used
I realized while looking on the docs.rs page of the `sysinfo` crate that the coverage numbers displayed were wrong:
![image](https://github.com/user-attachments/assets/264b2e25-6271-4ed1-8b35-e8bd4fd475c6)
I realized that it was because `--show-coverage --output-format=json` was relying on the same logic as the JSON output for the doc generation whereas it should not. I fixed it by changing the API for querying `is_json` a bit.
The underlying issue is that JSON output format is stripping reexports of items from private modules.
r? ``@notriddle``
Support clobber_abi and vector registers (clobber-only) in PowerPC inline assembly
This supports `clobber_abi` which is one of the requirements of stabilization mentioned in #93335.
This basically does a similar thing I did in https://github.com/rust-lang/rust/pull/130630 to implement `clobber_abi` for s390x, but for powerpc/powerpc64/powerpc64le.
- This also supports vector registers (as `vreg`) as clobber-only, which need to support clobbering of them to implement `clobber_abi`.
- `vreg` should be able to accept `#[repr(simd)]` types as input/output if the unstable `altivec` target feature is enabled, but `core::arch::{powerpc,powerpc64}` vector types, `#[repr(simd)]`, and `core::simd` are all unstable, so the fact that this is currently a clobber-only should not be considered a blocker of clobber_abi implementation or stabilization. So I have not implemented it in this PR.
- See https://github.com/rust-lang/rust/pull/131551 (which is based on this PR) for a PR to implement this.
- (I'm not sticking to whether that PR should be a separate PR or part of this PR, so I can merge that PR into this PR if needed.)
Refs:
- PPC32 SysV: Section "Function Calling Sequence" in [System V Application Binary Interface PowerPC Processor Supplement](https://refspecs.linuxfoundation.org/elf/elfspec_ppc.pdf)
- PPC64 ELFv1: Section 3.2 "Function Calling Sequence" in [64-bit PowerPC ELF Application Binary Interface Supplement](https://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#FUNC-CALL)
- PPC64 ELFv2: Section 2.2 "Function Calling Sequence" in [64-Bit ELF V2 ABI Specification](https://openpowerfoundation.org/specifications/64bitelfabi/)
- AIX: [Register usage and conventions](https://www.ibm.com/docs/en/aix/7.3?topic=overview-register-usage-conventions), [Special registers in the PowerPC®](https://www.ibm.com/docs/en/aix/7.3?topic=overview-special-registers-in-powerpc), [AIX vector programming](https://www.ibm.com/docs/en/aix/7.3?topic=concepts-aix-vector-programming)
- Register definition in LLVM: https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/PowerPC/PPCRegisterInfo.td#L189
If I understand the above four ABI documentations correctly, except for the PPC32 SysV's VR (Vector Registers) and 32-bit AIX (currently not supported by rustc)'s r13, there does not appear to be important differences in terms of implementing `clobber_abi`:
- The above four ABIs are consistent about FPR (0-13: volatile, 14-31: nonvolatile), CR (0-1,5-7: volatile, 2-4: nonvolatile), XER (volatile), and CTR (volatile).
- As for GPR, only the registers we are treating as reserved are slightly different
- r0, r3-r12 are volatile
- r1(sp, reserved), r14-31 are nonvolatile
- r2(reserved) is TOC pointer in PPC64 ELF/AIX, system-reserved register in PPC32 SysV (AFAIK used as thread pointer in Linux/BSDs)
- r13(reserved for non-32-bit-AIX) is thread pointer in PPC64 ELF, small data area pointer register in PPC32 SysV, "reserved under 64-bit environment; not restored across system calls[^r13]" in AIX)
- As for FPSCR, volatile in PPC64 ELFv1/AIX, some fields are volatile only in certain situations (rest are volatile) in PPC32 SysV/PPC64 ELFv2.
- As for VR (Vector Registers), it is not mentioned in PPC32 SysV, v0-v19 are volatile in both in PPC64 ELF/AIX, v20-v31 are nonvolatile in PPC64 ELF, reserved or nonvolatile depending on the ABI ([vec-extabi vs vec-default in LLVM](https://reviews.llvm.org/D89684), we are [using vec-extabi](https://github.com/rust-lang/rust/pull/131341#discussion_r1797693299)) in AIX:
> When the default Vector enabled mode is used, these registers are reserved and must not be used.
> In the extended ABI vector enabled mode, these registers are nonvolatile and their values are preserved across function calls
I left [FIXME comment about PPC32 SysV](https://github.com/rust-lang/rust/pull/131341#discussion_r1790496095) and added ABI check for AIX.
- As for VRSAVE, it is not mentioned in PPC32 SysV, nonvolatile in PPC64 ELFv1, reserved in PPC64 ELFv2/AIX
- As for VSCR, it is not mentioned in PPC32 SysV/PPC64 ELFv1, some fields are volatile only in certain situations (rest are volatile) in PPC64 ELFv2, volatile in AIX
We are currently treating r1-r2, r13 (non-32-bit-AIX), r29-r31, LR, CTR, and VRSAVE as reserved.
We are currently not processing anything about FPSCR and VSCR, but I feel those are things that should be processed by `preserves_flags` rather than `clobber_abi` if we need to do something about them. (However, PPCRegisterInfo.td in LLVM does not seem to define anything about them.)
Replaces #111335 and #124279
cc `@ecnelises` `@bzEq` `@lu-zero`
r? `@Amanieu`
`@rustbot` label +O-PowerPC +A-inline-assembly
[^r13]: callee-saved, according to [LLVM](6a6af0246b/llvm/lib/Target/PowerPC/PPCCallingConv.td (L322)) and [GCC](a9173a50e7/gcc/config/rs6000/rs6000.h (L859)).
add rustc std workspace crate sources
This adds the sources for the crates listed at https://crates.io/search?q=rustc-std-workspace in this repo. The first commit adds the original sources as downloaded from crates.io (with `Cargo.toml.orig` moved back over `Cargo.toml`), and adds a README explaining what this is about. The 2nd commit updates the sources to make the core and alloc crates re-exports of the "actual" core and alloc crates, as was already the case with `std`, and also adds a `repository` link to the manifest so one can figure out where to find these crates.
I bumped the version for the core and alloc crates in the hope that the new versions can be published on crates.io shortly after this PR lands.
See [Zulip](https://rust-lang.zulipchat.com/#narrow/channel/219381-t-libs/topic/rustc-std-workspace-core.20crate.20is.20empty) for a bit more context.
r? `@Amanieu`
Call the target libdir target libdir
Because it's the target libdir.
`--print` uses the same terminology, and it's a simple way to make it obviously different from `$sysroot/lib`.
This commit is the final step in the journey of renaming the historical
`wasm32-wasi` target in the Rust compiler to `wasm32-wasip1`. Various
steps in this journey so far have been:
* 2023-04-03: rust-lang/compiler-team#607 - initial proposal for this rename
* 2024-11-27: rust-lang/compiler-team#695 - amended schedule/procedure for rename
* 2024-01-29: rust-lang/rust#120468 - initial introduction of `wasm32-wasip1`
* 2024-06-18: rust-lang/rust#126662 - warn on usage of `wasm32-wasi`
* 2024-11-08: this PR - remove the `wasm32-wasi` target
The full transition schedule is in [this comment][comment] and is
summarized with:
* 2024-05-02: Rust 1.78 released with `wasm32-wasip1` target
* 2024-09-05: Rust 1.81 released warning on usage of `wasm32-wasi`
* 2025-01-09: Rust 1.84 to be released without the `wasm32-wasi` target
This means that support on stable for the replacement target of
`wasm32-wasip1` has currently been available for 6 months. Users have
already seen warnings on stable for 2 months about usage of
`wasm32-wasi` and stable users have another 2 months of warnings before
the target is removed from stable.
This commit is intended to be the final step in this transition so the
source tree should no longer mention `wasm32-wasi` except in historical
reference to the older name of the `wasm32-wasip1` target.
[comment]: https://github.com/rust-lang/rust/pull/120468#issuecomment-1977878747
Do not format generic consts
We introduced **nightly support** for generic const items in #113522, but formatting of consts was not modified. Making them format *correctly* is hard, so let's just bail formatting them so we don't accidentally strip their generics and where clauses. This is essentially no-op formatting for generic const items.
r? `````@calebcartwright````` or `````@ytmimi`````