Stop using CRATE_DEF_INDEX outside of metadata encoding.
`CRATE_DEF_ID` and `CrateNum::as_def_id` are almost always what we want. We should not manipulate raw `DefIndex` outside of metadata encoding.
Refactor HIR item-like traversal (part 1)
Issue #95004
- Create hir_crate_items query which traverses tcx.hir_crate(()).owners to return a hir::ModuleItems
- use tcx.hir_crate_items in tcx.hir().items() to return an iterator of hir::ItemId
- use tcx.hir_crate_items to introduce a tcx.hir().par_items(impl Fn(hir::ItemId)) to traverse all items in parallel;
Signed-off-by: Miguel Guarniz <mi9uel9@gmail.com>
cc `@cjgillot`
Spellchecking compiler comments
This PR cleans up the rest of the spelling mistakes in the compiler comments. This PR does not change any literal or code spelling issues.
This allows to compute the `BodyOwnerKind` from `DefKind` only, and
removes a direct dependency of some MIR queries onto HIR.
As a side effect, it also simplifies metadata, since we don't need 4
flavours of `EntryKind::*Static` any more.
There are a few places were we have to construct it, though, and a few
places that are more invasive to change. To do this, we create a
constructor with a long obvious name.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
Move ty::print methods to Drop-based scope guards
Primary goal is reducing codegen of the TLS access for each closure, which shaves ~3 seconds of bootstrap time over rustc as a whole.
Adopt let else in more places
Continuation of #89933, #91018, #91481, #93046, #93590, #94011.
I have extended my clippy lint to also recognize tuple passing and match statements. The diff caused by fixing it is way above 1 thousand lines. Thus, I split it up into multiple pull requests to make reviewing easier. This is the biggest of these PRs and handles the changes outside of rustdoc, rustc_typeck, rustc_const_eval, rustc_trait_selection, which were handled in PRs #94139, #94142, #94143, #94144.
Specifically, rename the `Const` struct as `ConstS` and re-introduce `Const` as
this:
```
pub struct Const<'tcx>(&'tcx Interned<ConstS>);
```
This now matches `Ty` and `Predicate` more closely, including using
pointer-based `eq` and `hash`.
Notable changes:
- `mk_const` now takes a `ConstS`.
- `Const` was copy, despite being 48 bytes. Now `ConstS` is not, so need a
we need separate arena for it, because we can't use the `Dropless` one any
more.
- Many `&'tcx Const<'tcx>`/`&Const<'tcx>` to `Const<'tcx>` changes
- Many `ct.ty` to `ct.ty()` and `ct.val` to `ct.val()` changes.
- Lots of tedious sigil fiddling.
Specifically, change `Ty` from this:
```
pub type Ty<'tcx> = &'tcx TyS<'tcx>;
```
to this
```
pub struct Ty<'tcx>(Interned<'tcx, TyS<'tcx>>);
```
There are two benefits to this.
- It's now a first class type, so we can define methods on it. This
means we can move a lot of methods away from `TyS`, leaving `TyS` as a
barely-used type, which is appropriate given that it's not meant to
be used directly.
- The uniqueness requirement is now explicit, via the `Interned` type.
E.g. the pointer-based `Eq` and `Hash` comes from `Interned`, rather
than via `TyS`, which wasn't obvious at all.
Much of this commit is boring churn. The interesting changes are in
these files:
- compiler/rustc_middle/src/arena.rs
- compiler/rustc_middle/src/mir/visit.rs
- compiler/rustc_middle/src/ty/context.rs
- compiler/rustc_middle/src/ty/mod.rs
Specifically:
- Most mentions of `TyS` are removed. It's very much a dumb struct now;
`Ty` has all the smarts.
- `TyS` now has `crate` visibility instead of `pub`.
- `TyS::make_for_test` is removed in favour of the static `BOOL_TY`,
which just works better with the new structure.
- The `Eq`/`Ord`/`Hash` impls are removed from `TyS`. `Interned`s impls
of `Eq`/`Hash` now suffice. `Ord` is now partly on `Interned`
(pointer-based, for the `Equal` case) and partly on `TyS`
(contents-based, for the other cases).
- There are many tedious sigil adjustments, i.e. adding or removing `*`
or `&`. They seem to be unavoidable.
[code coverage] Fix missing dead code in modules that are never called
The issue here is that the logic used to determine which CGU to put the dead function stubs in doesn't handle cases where a module is never assigned to a CGU (which is what happens when all of the code in the module is dead).
The partitioning logic also caused issues in #85461 where inline functions were duplicated into multiple CGUs resulting in duplicate symbols.
This commit fixes the issue by removing the complex logic used to assign dead code stubs to CGUs and replaces it with a much simpler model: we pick one CGU to hold all the dead code stubs. We pick a CGU which has exported items which increases the likelihood the linker won't throw away our dead functions and we pick the smallest to minimize the impact on compilation times for crates with very large CGUs.
Fixes#91661Fixes#86177Fixes#85718Fixes#79622
r? ```@tmandry```
cc ```@richkadel```
This PR is not urgent so please don't let it interrupt your holidays! 🎄🎁
Remove `NullOp::Box`
Follow up of #89030 and MCP rust-lang/compiler-team#460.
~1 month later nothing seems to be broken, apart from a small regression that #89332 (1aac85bb716c09304b313d69d30d74fe7e8e1a8e) shows could be regained by remvoing the diverging path, so it shall be safe to continue and remove `NullOp::Box` completely.
r? `@jonas-schievink`
`@rustbot` label T-compiler
The issue here is that the logic used to determine which CGU to put the
dead function stubs in doesn't handle cases where a module is never
assigned to a CGU.
The partitioning logic also caused issues in #85461 where inline
functions were duplicated into multiple CGUs resulting in duplicate
symbols.
This commit fixes the issue by removing the complex logic used to assign
dead code stubs to CGUs and replaces it with a much simplier model: we
pick one CGU to hold all the dead code stubs. We pick a CGU which has
exported items which increases the likelihood the linker won't throw
away our dead functions and we pick the smallest to minimize the impact
on compilation times for crates with very large CGUs.
Fixes#86177Fixes#85718Fixes#79622
By changing `as_str()` to take `&self` instead of `self`, we can just
return `&str`. We're still lying about lifetimes, but it's a smaller lie
than before, where `SymbolStr` contained a (fake) `&'static str`!
Record more artifact sizes during self-profiling.
This PR adds artifact size recording for
- "linked artifacts" (executables, RLIBs, dylibs, static libs)
- object files
- dwo files
- assembly files
- crate metadata
- LLVM bitcode files
- LLVM IR files
- codegen unit size estimates
Currently the identifiers emitted for these are hard-coded as string literals. Is it worth adding constants to https://github.com/rust-lang/measureme/blob/master/measureme/src/rustc.rs instead? We don't do that for query names and the like -- but artifact kinds might be more stable than query names.
Collect `panic/panic_bounds_check` during monomorphization
This would prevent link time errors if these functions are `#[inline]` (e.g. when `panic_immediate_abort` is used).
Fix#90405Fixrust-lang/cargo#10019
`@rustbot` label: T-compiler A-codegen