Remove the source archive functionality of ArchiveWriter
We now build archives through strictly additive means rather than taking an existing archive and potentially substracting parts. This is simpler and makes it easier to swap out the archive writer in https://github.com/rust-lang/rust/pull/97485.
Make `std::mem::needs_drop` accept `?Sized`
This change attempts to make `needs_drop` work with types like `[u8]` and `str`.
This enables code in types like `Arc<T>` that was not possible before, such as https://github.com/rust-lang/rust/pull/97676.
Add the intrinsic
declare {i8*, i1} @llvm.type.checked.load(i8* %ptr, i32 %offset, metadata %type)
This is used in the VFE optimization when lowering loading functions
from vtables to LLVM IR. The `metadata` is used to map the function to
all vtables this function could belong to. This ensures that functions
from vtables that might be used somewhere won't get removed.
It looks like the last time had left some remaining cfg's -- which made me think
that the stage0 bump was actually successful. This brings us to a released 1.62
beta though.
asm: Add a kreg0 register class on x86 which includes k0
Previously we only exposed a kreg register class which excludes the k0
register since it can't be used in many instructions. However k0 is a
valid register and we need to have a way of marking it as clobbered for
clobber_abi.
Fixes#94977
Previously we only exposed a kreg register class which excludes the k0
register since it can't be used in many instructions. However k0 is a
valid register and we need to have a way of marking it as clobbered for
clobber_abi.
Fixes#94977
Allow self-profiler to only record potentially costly arguments when argument recording is turned on
As discussed [on zulip](https://rust-lang.zulipchat.com/#narrow/stream/247081-t-compiler.2Fperformance/topic/Identifying.20proc-macro.20slowdowns/near/277304909) with `@wesleywiser,` I'd like to record proc-macro expansions in the self-profiler, with some detailed data (per-expansion spans for example, to follow #95473).
At the same time, I'd also like to avoid doing expensive things when tracking a generic activity's arguments, if they were not specifically opted into the event filter mask, to allow the self-profiler to be used in hotter contexts.
This PR tries to offer:
- a way to ensure a closure to record arguments will only be called in that situation, so that potentially costly arguments can still be recorded when needed. With the additional requirement that, if possible, it would offer a way to record non-owned data without adding many `generic_activity_with_arg_{...}`-style methods. This lead to the `generic_activity_with_arg_recorder` single entry-point, and the closure parameter would offer the new methods, able to be executed in a context where costly argument could be created without disturbing the profiled piece of code.
- some facilities/patterns allowing to record more rustc specific data in this situation, without making `rustc_data_structures` where the self-profiler is defined, depend on other rustc crates (causing circular dependencies): in particular, spans. They are quite tricky to turn into strings (if the default `Debug` impl output does not match the context one needs them for), and since I'd also like to avoid the allocation there when arg recording is turned off today, that has turned into another flexibility requirement for the API in this PR (separating the span-specific recording into an extension trait). **edit**: I've removed this from the PR so that it's easier to review, and opened https://github.com/rust-lang/rust/pull/95739.
- allow for extensibility in the future: other ways to record arguments, or additional data attached to them could be added in the future (e.g. recording the argument's name as well as its data).
Some areas where I'd love feedback:
- the API and names: the `EventArgRecorder` and its method for example. As well as the verbosity that comes from the increased flexibility.
- if I should convert the existing `generic_activity_with_arg{s}` to just forward to `generic_activity_with_arg_recorder` + `recorder.record_arg` (or remove them altogether ? Probably not): I've used the new API in the simple case I could find of allocating for an arg that may not be recorded, and the rest don't seem costly.
- [x] whether this API should panic if no arguments were recorded by the user-provided closure (like this PR currently does: it seems like an error to use an API dedicated to record arguments but not call the methods to then do so) or if this should just record a generic activity without arguments ?
- whether the `record_arg` function should be `#[inline(always)]`, like the `generic_activity_*` functions ?
As mentioned, r? `@wesleywiser` following our recent discussion.
Implement -Z oom=panic
This PR removes the `#[rustc_allocator_nounwind]` attribute on `alloc_error_handler` which allows it to unwind with a panic instead of always aborting. This is then used to implement `-Z oom=panic` as per RFC 2116 (tracking issue #43596).
Perf and binary size tests show negligible impact.
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
Clarify `Layout` interning.
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
r? `@fee1-dead`
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
Direct users towards using Rust target feature names in CLI
This PR consists of a couple of changes on how we handle target features.
In particular there is a bug-fix wherein we avoid passing through features that aren't prefixed by `+` or `-` to LLVM. These appear to be causing LLVM to assert, which is pretty poor a behaviour (and also makes it pretty clear we expect feature names to be prefixed).
The other commit, I anticipate to be somewhat more controversial is outputting a warning when users specify a LLVM-specific, or otherwise unknown, feature name on the CLI. In those situations we request users to either replace it with a known Rust feature name (e.g. `bmi` -> `bmi1`) or file a feature request. I've a couple motivations for this: first of all, if users are specifying these features on the command line, I'm pretty confident there is also a need for these features to be usable via `#[cfg(target_feature)]` machinery. And second, we're growing a fair number of backends recently and having ability to provide some sort of unified-ish interface in this place seems pretty useful to me.
Sponsored by: standard.ai
Partially move cg_ssa towards using a single builder
Not all codegen backends can handle hopping between blocks well. For example Cranelift requires blocks to be terminated before switching to building a new block. Rust-gpu requires a `RefCell` to allow hopping between blocks and cg_gcc currently has a buggy implementation of hopping between blocks. This PR reduces the amount of cases where cg_ssa switches between blocks before they are finished and mostly fixes the block hopping in cg_gcc. (~~only `scalar_to_backend` doesn't handle it correctly yet in cg_gcc~~ fixed that one.)
`@antoyo` please review the cg_gcc changes.