Update documentation for Arc::from_raw, Arc::increment_strong_count, and Arc::decrement_strong_count to clarify allocator requirement
### Related Issue:
This update addresses parts of the issue raised in [#134242](https://github.com/rust-lang/rust/issues/134242), where Arc's documentation lacks `Global Allocator` safety descriptions for three APIs. And this was confirmed by ```@workingjubilee``` :
> Wait, nevermind. I apparently forgot the `increment_strong_count` is implicitly A = Global. Ugh. Another reason these things are hard to track, unfortunately.
### PR Description
This PR updates the document for the following APIs:
- `Arc::from_raw`
- `Arc::increment_strong_count`
- `Arc::decrement_strong_count`
These APIs currently lack an important piece of documentation: **the raw pointer must point to a block of memory allocated by the global allocator**. This crucial detail is specified in the source code but is not reflected in the documentation, which could lead to confusion or incorrect usage by users.
### Problem:
The following example demonstrates the potential confusion caused by the lack of documentation:
```rust
#![feature(allocator_api)]
use std::alloc::{Allocator,AllocError, Layout};
use std::ptr::NonNull;
use std::sync::Arc;
struct LocalAllocator {
memory: NonNull<u8>,
size: usize,
}
impl LocalAllocator {
fn new(size: usize) -> Self {
Self {
memory: unsafe { NonNull::new_unchecked(&mut 0u8 as *mut u8) },
size,
}
}
}
unsafe impl Allocator for LocalAllocator {
fn allocate(&self, _layout: Layout) -> Result<NonNull<[u8]>, AllocError> {
Ok(NonNull::slice_from_raw_parts(self.memory, self.size))
}
unsafe fn deallocate(&self, _ptr: NonNull<u8>, _layout: Layout) {
}
}
fn main() {
let allocator = LocalAllocator::new(64);
let arc = Arc::new_in(5, &allocator); // Here, allocator could be any non-global allocator
let ptr = Arc::into_raw(arc);
unsafe {
Arc::increment_strong_count(ptr);
let arc = Arc::from_raw(ptr);
assert_eq!(2, Arc::strong_count(&arc)); // Failed here!
}
}
```
Add an example for `Vec::splice` inserting elements without removing
This example clearly showcases how `splice` can be used to insert multiple elements efficiently at an index into a vector.
Fixes#135369.
The added example:
> Using `splice` to insert new items into a vector efficiently at a specific position indicated by an empty range:
> ```rust
> let mut v = vec![1, 5];
> let new = [2, 3, 4];
> v.splice(1..1, new);
> assert_eq!(v, [1, 2, 3, 4, 5]);
> ```
`@rustbot` label A-docs A-collections
Rollup of 6 pull requests
Successful merges:
- #129259 (Add inherent versions of MaybeUninit methods for slices)
- #135374 (Suggest typo fix when trait path expression is typo'ed)
- #135377 (Make MIR cleanup for functions with impossible predicates into a real MIR pass)
- #135378 (Remove a bunch of diagnostic stashing that doesn't do anything)
- #135397 (compiletest: add erroneous variant to `string_enum`s conversions error)
- #135398 (add more crash tests)
r? `@ghost`
`@rustbot` modify labels: rollup
Use `NonNull::without_provenance` within the standard library
This API removes the need for several `unsafe` blocks, and leads to clearer code. It uses feature `nonnull_provenance` (#135243).
Close#135343
Update a bunch of library types for MCP807
This greatly reduces the number of places that actually use the `rustc_layout_scalar_valid_range_*` attributes down to just 3:
```
library/core\src\ptr\non_null.rs
68:#[rustc_layout_scalar_valid_range_start(1)]
library/core\src\num\niche_types.rs
19: #[rustc_layout_scalar_valid_range_start($low)]
20: #[rustc_layout_scalar_valid_range_end($high)]
```
Everything else -- PAL Nanoseconds, alloc's `Cap`, niched FDs, etc -- all just wrap those `niche_types` types.
r? ghost
Approved ACP: https://github.com/rust-lang/libs-team/issues/502
Tracking issue: https://github.com/rust-lang/rust/issues/134915
These types represent human-readable strings that are conventionally,
but not always, UTF-8. The `Debug` impl prints non-UTF-8 bytes using
escape sequences, and the `Display` impl uses the Unicode replacement
character.
This is a minimal implementation of these types and associated trait
impls. It does not add any helper methods to other types such as `[u8]`
or `Vec<u8>`.
I've omitted a few implementations of `AsRef`, `AsMut`, `Borrow`,
`From`, and `PartialOrd`, when those would be the second implementation
for a type (counting the `T` impl) or otherwise may cause inference
failures. These impls are important, but we can attempt to add them
later in standalone commits, and run them through crater.
In addition to the `bstr` feature, I've added a `bstr_internals` feature
for APIs provided by `core` for use by `alloc` but not currently
intended for stabilization.
This API and its implementation are based *heavily* on the `bstr` crate
by Andrew Gallant (@BurntSushi).
This greatly reduces the number of places that actually use the `rustc_layout_scalar_valid_range_*` attributes down to just 3:
```
library/core\src\ptr\non_null.rs
68:#[rustc_layout_scalar_valid_range_start(1)]
library/core\src\num\niche_types.rs
19: #[rustc_layout_scalar_valid_range_start($low)]
20: #[rustc_layout_scalar_valid_range_end($high)]
```
Everything else -- PAL Nanoseconds, alloc's `Cap`, niched FDs, etc -- all just wrap those `niche_types` types.
Impl String::into_chars
Tracking issue - https://github.com/rust-lang/rust/issues/133125
r? `@programmerjake` `@kennytm` `@Amanieu`
This refers to https://github.com/rust-lang/libs-team/issues/268
Before adding tests and creating a tracking issue, I'd like to reach a consensus on the implementation direction and two questions:
1. Whether we'd add a `String::into_char_indices` method also?
2. See inline comment.
do not in-place-iterate over flatmap/flatten
The implementation is unsound when a partially consumed iterator has some elements buffered in the front/back parts and cloning the Iterator removes the capacity from the backing vec::IntoIter.
This is a fix for #135103 that removes the specialization trait impls without removing some supporting parts. I've kept it small so it can be easily backported. I'll either remove the remaining parts or think of a way to recover the optimization in a separate PR.
The implementation is unsound when a partially consumed iterator has
some elements buffered in the front/back parts and cloning the Iterator
removes the capacity from the backing vec::IntoIter.
Document collection `From` and `FromIterator` impls that drop duplicate keys.
This behavior is worth documenting because there are other plausible alternatives, such as panicking when a duplicate is encountered, and it reminds the programmer to consider whether they should, for example, coalesce duplicate keys first.
Followup to #89869.
Add `into_array` conversion destructors for `Box`, `Rc`, and `Arc`.
Tracking issue: #133508
This PR adds the `into_array` destructor for `alloc::boxed::Box<[T]>`, `alloc::rc::Rc<[T]>`, and `alloc::sync::Arc<[T]>`.
Note that this PR assumes the initial proposal of these functions returning `Option`. It is still an open question whether this should instead be `Result`. We can, however, easily change this in a follow-up PR with the necessary consensus.
Asserts the maximum value that can be returned from `Vec::len`
Currently, casting `Vec<i32>` to `Vec<u32>` takes O(1) time:
```rust
// See <https://godbolt.org/z/hxq3hnYKG> for assembly output.
pub fn cast(vec: Vec<i32>) -> Vec<u32> {
vec.into_iter().map(|e| e as _).collect()
}
```
But the generated assembly is not the same as the identity function, which prevents us from casting `Vec<Vec<i32>>` to `Vec<Vec<u32>>` within O(1) time:
```rust
// See <https://godbolt.org/z/7n48bxd9f> for assembly output.
pub fn cast(vec: Vec<Vec<i32>>) -> Vec<Vec<u32>> {
vec.into_iter()
.map(|e| e.into_iter().map(|e| e as _).collect())
.collect()
}
```
This change tries to fix the problem. You can see the comparison here: <https://godbolt.org/z/jdManrKvx>.
This behavior is worth documenting because there are other plausible
alternatives, such as panicking when a duplicate is encountered, and
it reminds the programmer to consider whether they should, for example,
coalesce duplicate keys first.
docs: Mention `spare_capacity_mut()` in `Vec::set_len`
I recently went down a small rabbit hole when trying to identify safe use of `Vec::set_len`. The solution was `Vec::spare_capacity_mut`. I think the docs on `Vec::set_len` benefit from mentioning this method.
A possible counter-argument could be that the [clippy lint `uninit_vec`](https://rust-lang.github.io/rust-clippy/master/index.html#/uninit_vec) already nudges people in the right direction. However, I think a working example on `Vec::set_len` is still beneficial.
Happy to hear your thoughts on the matter. 😊
Use field init shorthand where possible
Field init shorthand allows writing initializers like `tcx: tcx` as
`tcx`. The compiler already uses it extensively. Fix the last few places
where it isn't yet used.
EDIT: this PR also updates `rustfmt.toml` to set
`use_field_init_shorthand = true`.
Field init shorthand allows writing initializers like `tcx: tcx` as
`tcx`. The compiler already uses it extensively. Fix the last few places
where it isn't yet used.
Rollup of 7 pull requests
Successful merges:
- #130361 (std::net: Solaris supports `SOCK_CLOEXEC` as well since 11.4.)
- #133406 (Add value accessor methods to `Mutex` and `RwLock`)
- #133633 (don't show the full linker args unless `--verbose` is passed)
- #134285 (Add some convenience helper methods on `hir::Safety`)
- #134310 (Add clarity to the examples of some `Vec` & `VecDeque` methods)
- #134313 (Don't make a def id for `impl_trait_in_bindings`)
- #134315 (A couple of polonius fact generation cleanups)
r? `@ghost`
`@rustbot` modify labels: rollup
Add clarity to the examples of some `Vec` & `VecDeque` methods
In some `Vec` and `VecDeque` examples where elements are `i32`, examples can seem a bit confusing at first glance if a parameter of the method is an `usize`.
In this case, I think it's better to use `char` rather than `i32`.
> [!NOTE]
> It's already done in the implementation of `VecDeque::insert`
#### Difference
- `i32`
```rs
let mut v = vec![1, 2, 3];
assert_eq!(v.remove(1), 2);
assert_eq!(v, [1, 3]);
```
- `char`
```rs
let mut v = vec!['a', 'b', 'c'];
assert_eq!(v.remove(1), 'b');
assert_eq!(v, ['a', 'c']);
```
Even tho it's pretty minor, it's a nice to have.
`UniqueRc` trait impls
UniqueRc tracking Issue: #112566
Stable traits: (i.e. impls behind only the `unique_rc_arc` feature gate)
* Support the same formatting as `Rc`:
* `fmt::Debug` and `fmt::Display` delegate to the pointee.
* `fmt::Pointer` prints the address of the pointee.
* Add explicit `!Send` and `!Sync` impls, to mirror `Rc`.
* Borrowing traits: `Borrow`, `BorrowMut`, `AsRef`, `AsMut`
* `Rc` does not implement `BorrowMut` and `AsMut`, but `UniqueRc` can.
* Unconditional `Unpin`, like other heap-allocated types.
* Comparison traits `(Partial)Ord` and `(Partial)Eq` delegate to the pointees.
* `PartialEq for UniqueRc` does not do `Rc`'s specialization shortcut for pointer equality when `T: Eq`, since by definition two `UniqueRc`s cannot share an allocation.
* `Hash` delegates to the pointee.
* `AsRawFd`, `AsFd`, `AsHandle`, `AsSocket` delegate to the pointee like `Rc`.
* Sidenote: The bounds on `T` for the existing `Pointer<T>` impls for specifically `AsRawFd` and `AsSocket` do not allow `T: ?Sized`. For the added `UniqueRc` impls I allowed `T: ?Sized` for all four traits, but I did not change the existing (stable) impls.
Unstable traits:
* `DispatchFromDyn`, allows using `UniqueRc<Self>` as a method receiver under `feature(arbitrary_self_types)`.
* Existing `PinCoerceUnsized for UniqueRc` is generalized to allow non-`Global` allocators, like `Rc`.
* `DerefPure`, allows using `UniqueRc` in deref-patterns under `feature(deref_patterns)`, like `Rc`.
For documentation, `Rc` only has documentation on the comparison traits' methods, so I copied/adapted the documentation for those, and left the rest without impl-specific docs.
~~Edit: Marked as draft while I figure out `UnwindSafe`.~~
Edit: Ignoring `UnwindSafe` for this PR
Remove support for specializing ToString outside the standard library
This is the only trait specializable outside of the standard library. Before stabilizing specialization we will probably want to remove support for this. It was originally made specializable to allow a more efficient ToString in libproc_macro back when this way the only way to get any data out of a TokenStream. We now support getting individual tokens, so proc macros no longer need to call it as often.
In some `Vec` and `VecDeque` examples where elements are i32, examples can seem a bit confusing at first glance if a parameter of the method is an usize.
This is the only trait specializable outside of the standard library.
Before stabilizing specialization we will probably want to remove
support for this. It was originally made specializable to allow a more
efficient ToString in libproc_macro back when this way the only way to
get any data out of a TokenStream. We now support getting individual
tokens, so proc macros no longer need to call it as often.
Move some alloc tests to the alloctests crate
Unit tests directly inside of standard library crates require a very fragile way of building that is hard to reproduce outside of bootstrap.
Implementation of `fmt::FormattingOptions`
Tracking issue: #118117
Public API:
```rust
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct FormattingOptions { … }
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Sign {
Plus,
Minus
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DebugAsHex {
Lower,
Upper
}
impl FormattingOptions {
pub fn new() -> Self;
pub fn sign(&mut self, sign: Option<Sign>) -> &mut Self;
pub fn sign_aware_zero_pad(&mut self, sign_aware_zero_pad: bool) -> &mut Self;
pub fn alternate(&mut self, alternate: bool) -> &mut Self;
pub fn fill(&mut self, fill: char) -> &mut Self;
pub fn align(&mut self, alignment: Option<Alignment>) -> &mut Self;
pub fn width(&mut self, width: Option<usize>) -> &mut Self;
pub fn precision(&mut self, precision: Option<usize>) -> &mut Self;
pub fn debug_as_hex(&mut self, debug_as_hex: Option<DebugAsHex>) -> &mut Self;
pub fn get_sign(&self) -> Option<Sign>;
pub fn get_sign_aware_zero_pad(&self) -> bool;
pub fn get_alternate(&self) -> bool;
pub fn get_fill(&self) -> char;
pub fn get_align(&self) -> Option<Alignment>;
pub fn get_width(&self) -> Option<usize>;
pub fn get_precision(&self) -> Option<usize>;
pub fn get_debug_as_hex(&self) -> Option<DebugAsHex>;
pub fn create_formatter<'a>(self, write: &'a mut (dyn Write + 'a)) -> Formatter<'a>;
}
impl<'a> Formatter<'a> {
pub fn new(write: &'a mut (dyn Write + 'a), options: FormattingOptions) -> Self;
pub fn with_options<'b>(&'b mut self, options: FormattingOptions) -> Formatter<'b>;
pub fn sign(&self) -> Option<Sign>;
pub fn options(&self) -> FormattingOptions;
}
```
Relevant changes from the public API in the tracking issue (I'm leaving out some stuff I consider obvious mistakes, like missing `#[derive(..)]`s and `pub` specifiers):
- `enum DebugAsHex`/`FormattingOptions::debug_as_hex`/`FormattingOptions::get_debug_as_hex`: To support `{:x?}` as well as `{:X?}`. I had completely missed these options in the ACP. I'm open for any and all bikeshedding, not married to the name.
- `fill`/`get_fill` now takes/returns `char` instead of `Option<char>`. This simply mirrors what `Formatter::fill` returns (with default being `' '`).
- Changed `zero_pad`/`get_zero_pad` to `sign_aware_zero_pad`/`get_sign_aware_zero_pad`. This also mirrors `Formatter::sign_aware_zero_pad`. While I'm not a fan of this quite verbose name, I do believe that having the interface of `Formatter` and `FormattingOptions` be compatible is more important.
- For the same reason, renamed `alignment`/`get_alignment` to `aling`/`get_align`.
- Deviating from my initial idea, `Formatter::with_options` returns a `Formatter` which has the lifetime of the `self` reference as its generic lifetime parameter (in the original API spec, the generic lifetime of the returned `Formatter` was the generic lifetime used by `self` instead). Otherwise, one could construct two `Formatter`s that both mutably borrow the same underlying buffer, which would be unsound. This solution still has performance benefits over simply using `Formatter::new`, so I believe it is worthwhile to keep this method.
Stabilize noop_waker
Tracking Issue: #98286
This is a handy feature that's been used widely in tests and example async code and it'd be nice to make it available to users.
cc `@rust-lang/wg-async`
Fix missing newlines that rustfmt removed.
fix trailing whitespace
Fix duplicate word.
Reformat panic reasons into a list
remove trailing whitespace 2 electric boogaloo
Change verbe tense.
Integrate suggestions
Bump boostrap compiler to new beta
Currently failing due to something about the const stability checks and `panic!`. I'm not sure why though since I wasn't able to see any PRs merged in the past few days that would result in a `cfg(bootstrap)` that shouldn't be removed. cc `@RalfJung` #131349
Use consistent wording in docs, use is zero instead of is 0
In documentation, wording of _"`rhs` is zero"_ and _"`rhs` is 0"_ is intermixed. This is especially visible [here](https://doc.rust-lang.org/std/primitive.usize.html#method.div_ceil).
This changes all occurrences to _"`rhs` is zero"_ for better readability.
That is, differentiate between out-of-bounds and overlapping indices, and remove the generic parameter `N`.
I also exported `GetManyMutError` from `alloc` (and `std`), which was apparently forgotten.
Changing the error to carry additional details means LLVM no longer generates separate short-circuiting branches for the checks, instead it generates one branch at the end. I therefore changed the code to use early returns to make LLVM generate jumps. Benchmark results between the approaches are somewhat mixed, but I chose this approach because it is significantly faster with ranges and also faster with `unwrap()`.
This reduces code sizes and better respects programmer intent when
marking inline(never). Previously such a marking was essentially ignored
for generic functions, as we'd still inline them in remote crates.
btree: add `{Entry,VacantEntry}::insert_entry`
This matches the recently-stabilized methods on `HashMap` entries. I've
reused tracking issue #65225 for now, but we may want to split it.
btree: don't leak value if destructor of key panics
This PR fixes a regression from https://github.com/rust-lang/rust/pull/84904.
The `BTreeMap` already attempts to handle panicking destructors of the key-value pairs by continuing to execute the remaining destructors after one destructor panicked. However, after #84904 the destructor of a value in a key-value pair gets skipped if the destructor of the key panics, only continuing with the next key-value pair. This PR reverts to the behavior before #84904 to also drop the corresponding value if the destructor of a key panics.
This avoids potential memory leaks and can fix the soundness of programs that rely on the destructors being executed (even though this should not be relied upon, because the std collections currently do not guarantee that the remaining elements are dropped after a panic in a destructor).
cc `@Amanieu` because you had opinions on panicking destructors
Use attributes for `dangling_pointers_from_temporaries` lint
Checking for dangling pointers by function name isn't ideal, and leaves out certain pointer-returning methods that don't follow the `as_ptr` naming convention. Using an attribute for this lint cleans things up and allows more thorough coverage of other methods, such as `UnsafeCell::get()`.
Add vec_deque::Iter::as_slices and friends
Add the following methods, that work similarly to VecDeque::as_slices:
- alloc::collections::vec_deque::Iter::as_slices
- alloc::collections::vec_deque::IterMut::into_slices
- alloc::collections::vec_deque::IterMut::as_slices
- alloc::collections::vec_deque::IterMut::as_mut_slices
Obtaining slices from a VecDeque iterator was not previously possible.
They are unusual methods. The docs don't really describe the cases when
they might be useful (as opposed to just `get`), and the examples don't
demonstrate the interesting cases at all.
This commit improves the docs and the examples.
btree: simplify the backdoor between set and map
The internal `btree::Recover` trait acted as a private API between
`BTreeSet` and `BTreeMap`, but we can use `pub(_)` restrictions these
days, and some of the methods don't need special handling anymore.
* `BTreeSet::get` can use `BTreeMap::get_key_value`
* `BTreeSet::take` can use `BTreeMap::remove_entry`
* `BTreeSet::replace` does need help, but this now uses a `pub(super)`
method on `BTreeMap` instead of the trait.
* `btree::Recover` is now removed.
The internal `btree::Recover` trait acted as a private API between
`BTreeSet` and `BTreeMap`, but we can use `pub(_)` restrictions these
days, and some of the methods don't need special handling anymore.
* `BTreeSet::get` can use `BTreeMap::get_key_value`
* `BTreeSet::take` can use `BTreeMap::remove_entry`
* `BTreeSet::replace` does need help, but this now uses a `pub(super)`
method on `BTreeMap` instead of the trait.
* `btree::Recover` is now removed.
split up the first paragraph of doc comments for better summaries
used `./x clippy -Aclippy::all '-Wclippy::too_long_first_doc_paragraph' library/core library/alloc` to find these issues.
This updates to a new version of builtins that includes [1], which was
the last blocker to us enabling `f128` tests on all platforms 🎉.
With this update, also change to pinning the version with `=` rather
than using the default carat versioning. This is meant to ensure that
`compiler-builtins` does not get updated as part of the weekly
`Cargo.lock` update, since updates to this crate need to be intentional:
changes to rust-lang/rust and rust-lang/compiler-builtins sometimes need
to be kept in lockstep, unlike most dependencies, and sometimes these
updates can be problematic.
[1]: https://github.com/rust-lang/compiler-builtins/pull/624
Implement `From<&mut {slice}>` for `Box/Rc/Arc<{slice}>`
ACP: https://github.com/rust-lang/libs-team/issues/424
New API:
```rust
impl<T: Clone> From<&mut [T]> for Box<[T]>
impl From<&mut str> for Box<str>
impl From<&mut CStr> for Box<CStr>
impl From<&mut OsStr> for Box<OsStr>
impl From<&mut Path> for Box<Path>
impl<T: Clone> From<&mut [T]> for Rc<[T]>
impl From<&mut str> for Rc<str>
impl From<&mut CStr> for Rc<CStr>
impl From<&mut OsStr> for Rc<OsStr>
impl From<&mut Path> for Rc<Path>
impl<T: Clone> From<&mut [T]> for Arc<[T]>
impl From<&mut str> for Arc<str>
impl From<&mut CStr> for Arc<CStr>
impl From<&mut OsStr> for Arc<OsStr>
impl From<&mut Path> for Arc<Path>
```
Since they are trait implementations, I think these are insta-stable.
As mentioned in https://github.com/rust-lang/libs-team/issues/424#issuecomment-2299415749, a crater run might be needed.
Rc/Arc: don't leak the allocation if drop panics
Currently, when the last `Rc<T>` or `Arc<T>` is dropped and the destructor of `T` panics, the allocation will be leaked. This leak is unnecessary since the data cannot be (safely) accessed again and `Box` already deallocates in this case, so let's do the same for `Rc` and `Arc`, too.
Split `boxed.rs` into a few modules
I wanted to add an impl for `Box<_>`, but was quickly discouraged by the 3K file. This splits off a couple bits, making it at least a bit more manageable.
r? ````@workingjubilee```` (I think you are not bothered by refactorings like this?)
Const stability checks v2
The const stability system has served us well ever since `const fn` were first stabilized. It's main feature is that it enforces *recursive* validity -- a stable const fn cannot internally make use of unstable const features without an explicit marker in the form of `#[rustc_allow_const_fn_unstable]`. This is done to make sure that we don't accidentally expose unstable const features on stable in a way that would be hard to take back. As part of this, it is enforced that a `#[rustc_const_stable]` can only call `#[rustc_const_stable]` functions. However, some problems have been coming up with increased usage:
- It is baffling that we have to mark private or even unstable functions as `#[rustc_const_stable]` when they are used as helpers in regular stable `const fn`, and often people will rather add `#[rustc_allow_const_fn_unstable]` instead which was not our intention.
- The system has several gaping holes: a private `const fn` without stability attributes whose inherited stability (walking up parent modules) is `#[stable]` is allowed to call *arbitrary* unstable const operations, but can itself be called from stable `const fn`. Similarly, `#[allow_internal_unstable]` on a macro completely bypasses the recursive nature of the check.
Fundamentally, the problem is that we have *three* disjoint categories of functions, and not enough attributes to distinguish them:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
Functions in the first two categories cannot use unstable const features and they can only call functions from the first two categories.
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, all the holes mentioned above have been closed. There's still one potential hole that is hard to avoid, which is when MIR building automatically inserts calls to a particular function in stable functions -- which happens in the panic machinery. Those need to be manually marked `#[rustc_const_stable_indirect]` to be sure they follow recursive const stability. But that's a fairly rare and special case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be constified simply by marking it as `const fn`, and it will then be const-callable from stable `const fn` and subject to recursive const stability requirements. If it is publicly reachable (which implies it cannot be unmarked), it will be const-unstable under the same feature gate. Only if the function ever becomes `#[stable]` does it need a `#[rustc_const_unstable]` or `#[rustc_const_stable]` marker to decide if this should also imply const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to use unstable const lang features (including intrinsics), or (b) `#[stable]` functions that are not yet intended to be const-stable. Adding `#[rustc_const_stable]` is only needed for functions that are actually meant to be directly callable from stable const code. `#[rustc_const_stable_indirect]` is used to mark intrinsics as const-callable and for `#[rustc_const_unstable]` functions that are actually called from other, exposed-on-stable `const fn`. No other attributes are required.
Also see the updated dev-guide at https://github.com/rust-lang/rustc-dev-guide/pull/2098.
I think in the future we may want to tweak this further, so that in the hopefully common case where a public function's const-stability just exactly mirrors its regular stability, we never have to add any attribute. But right now, once the function is stable this requires `#[rustc_const_stable]`.
### Open question
There is one point I could see we might want to do differently, and that is putting `#[rustc_const_unstable]` functions (but not intrinsics) in category 2 by default, and requiring an extra attribute for `#[rustc_const_not_exposed_on_stable]` or so. This would require a bunch of extra annotations, but would have the advantage that turning a `#[rustc_const_unstable]` into `#[rustc_const_stable]` will never change the way the function is const-checked. Currently, we often discover in the const stabilization PR that a function needs some other unstable const things, and then we rush to quickly deal with that. In this alternative universe, we'd work towards getting rid of the `rustc_const_not_exposed_on_stable` before stabilization, and once that is done stabilization becomes a trivial matter. `#[rustc_const_stable_indirect]` would then only be used for intrinsics.
I think I like this idea, but might want to do it in a follow-up PR, as it will need a whole bunch of annotations in the standard library. Also, we probably want to convert all const intrinsics to the "new" form (`#[rustc_intrinsic]` instead of an `extern` block) before doing this to avoid having to deal with two different ways of declaring intrinsics.
Cc `@rust-lang/wg-const-eval` `@rust-lang/libs-api`
Part of https://github.com/rust-lang/rust/issues/129815 (but not finished since this is not yet sufficient to safely let us expose `const fn` from hashbrown)
Fixes https://github.com/rust-lang/rust/issues/131073 by making it so that const-stable functions are always stable
try-job: test-various
Fundamentally, we have *three* disjoint categories of functions:
1. const-stable functions
2. private/unstable functions that are meant to be callable from const-stable functions
3. functions that can make use of unstable const features
This PR implements the following system:
- `#[rustc_const_stable]` puts functions in the first category. It may only be applied to `#[stable]` functions.
- `#[rustc_const_unstable]` by default puts functions in the third category. The new attribute `#[rustc_const_stable_indirect]` can be added to such a function to move it into the second category.
- `const fn` without a const stability marker are in the second category if they are still unstable. They automatically inherit the feature gate for regular calls, it can now also be used for const-calls.
Also, several holes in recursive const stability checking are being closed.
There's still one potential hole that is hard to avoid, which is when MIR
building automatically inserts calls to a particular function in stable
functions -- which happens in the panic machinery. Those need to *not* be
`rustc_const_unstable` (or manually get a `rustc_const_stable_indirect`) to be
sure they follow recursive const stability. But that's a fairly rare and special
case so IMO it's fine.
The net effect of this is that a `#[unstable]` or unmarked function can be
constified simply by marking it as `const fn`, and it will then be
const-callable from stable `const fn` and subject to recursive const stability
requirements. If it is publicly reachable (which implies it cannot be unmarked),
it will be const-unstable under the same feature gate. Only if the function ever
becomes `#[stable]` does it need a `#[rustc_const_unstable]` or
`#[rustc_const_stable]` marker to decide if this should also imply
const-stability.
Adding `#[rustc_const_unstable]` is only needed for (a) functions that need to
use unstable const lang features (including intrinsics), or (b) `#[stable]`
functions that are not yet intended to be const-stable. Adding
`#[rustc_const_stable]` is only needed for functions that are actually meant to
be directly callable from stable const code. `#[rustc_const_stable_indirect]` is
used to mark intrinsics as const-callable and for `#[rustc_const_unstable]`
functions that are actually called from other, exposed-on-stable `const fn`. No
other attributes are required.
Rename Receiver -> LegacyReceiver
As part of the "arbitrary self types v2" project, we are going to replace the current `Receiver` trait with a new mechanism based on a new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard. Options considered included:
* HardCodedReceiver (because it should only be used for things in the standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary. Assuming the new mechanism proceeds to stabilization as intended, the legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library, we suspect it may be in use elsehwere, so we're landing this change separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? `@wesleywiser`
Optimize `Rc<T>::default`
The missing piece of https://github.com/rust-lang/rust/pull/131460.
Also refactored `Arc<T>::default` by using a safe `NonNull::from(Box::leak(_))` to replace the unnecessarily unsafe call to `NonNull::new_unchecked(Box::into_raw(_))`. The remaining unsafety is coming from `[Rc|Arc]::from_inner`, which is safe from the construction of `[Rc|Arc]Inner`.
better default capacity for str::replace
Adds smarter capacity for str::replace in cases where we know that the output will be at least as long as the original string.
As part of the "arbitrary self types v2" project, we are going to
replace the current `Receiver` trait with a new mechanism based on a
new, different `Receiver` trait.
This PR renames the old trait to get it out the way. Naming is hard.
Options considered included:
* HardCodedReceiver (because it should only be used for things in the
standard library, and hence is sort-of hard coded)
* LegacyReceiver
* TargetLessReceiver
* OldReceiver
These are all bad names, but fortunately this will be temporary.
Assuming the new mechanism proceeds to stabilization as intended, the
legacy trait will be removed altogether.
Although we expect this trait to be used only in the standard library,
we suspect it may be in use elsehwere, so we're landing this change
separately to identify any surprising breakages.
It's known that this trait is used within the Rust for Linux project; a
patch is in progress to remove their dependency.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
Fix predicate signatures in retain_mut docs
This is my first PR here so let me know if I'm doing anything wrong.
The docs for `retain_mut` in `LinkedList` and `VecDeque` say the predicate takes `&e`, but it should be `&mut e` to match the actual signature. `Vec` [has it documented](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain_mut) correctly already.
optimize str.replace
Adds a fast path for str.replace for the ascii to ascii case. This allows for autovectorizing the code. Also should this instead be done with specialization? This way we could remove one branch. I think it is the kind of branch that is easy to predict though.
Benchmark for the fast path (replace all "a" with "b" in the rust wikipedia article, using criterion) :
| N | Speedup | Time New (ns) | Time Old (ns) |
|----------|---------|---------------|---------------|
| 2 | 2.03 | 13.567 | 27.576 |
| 8 | 1.73 | 17.478 | 30.259 |
| 11 | 2.46 | 18.296 | 45.055 |
| 16 | 2.71 | 17.181 | 46.526 |
| 37 | 4.43 | 18.526 | 81.997 |
| 64 | 8.54 | 18.670 | 159.470 |
| 200 | 9.82 | 29.634 | 291.010 |
| 2000 | 24.34 | 81.114 | 1974.300 |
| 20000 | 30.61 | 598.520 | 18318.000 |
| 1000000 | 29.31 | 33458.000 | 980540.000 |
Implemented `FromStr` for `CString` and `TryFrom<CString>` for `String`
The motivation of this change is making it possible to use `CString` in generic methods with `FromStr` and `TryInto<String>` trait bounds. The same traits are already implemented for `OsString` which is an FFI type too.
remove const_cow_is_borrowed feature gate
The two functions guarded by this are still unstable, and there's no reason to require a separate feature gate for their const-ness -- we can just have `cow_is_borrowed` cover both kinds of stability.
Cc #65143
Port sort-research-rs test suite to Rust stdlib tests
This PR is a followup to https://github.com/rust-lang/rust/pull/124032. It replaces the tests that test the various sort functions in the standard library with a test-suite developed as part of https://github.com/Voultapher/sort-research-rs. The current tests suffer a couple of problems:
- They don't cover important real world patterns that the implementations take advantage of and execute special code for.
- The input lengths tested miss out on code paths. For example, important safety property tests never reach the quicksort part of the implementation.
- The miri side is often limited to `len <= 20` which means it very thoroughly tests the insertion sort, which accounts for 19 out of 1.5k LoC.
- They are split into to core and alloc, causing code duplication and uneven coverage.
- ~~The randomness is tied to a caller location, wasting the space exploration capabilities of randomized testing.~~ The randomness is not repeatable, as it relies on `std:#️⃣:RandomState::new().build_hasher()`.
Most of these issues existed before https://github.com/rust-lang/rust/pull/124032, but they are intensified by it. One thing that is new and requires additional testing, is that the new sort implementations specialize based on type properties. For example `Freeze` and non `Freeze` execute different code paths.
Effectively there are three dimensions that matter:
- Input type
- Input length
- Input pattern
The ported test-suite tests various properties along all three dimensions, greatly improving test coverage. It side-steps the miri issue by preferring sampled approaches. For example the test that checks if after a panic the set of elements is still the original one, doesn't do so for every single possible panic opportunity but rather it picks one at random, and performs this test across a range of input length, which varies the panic point across them. This allows regular execution to easily test inputs of length 10k, and miri execution up to 100 which covers significantly more code. The randomness used is tied to a fixed - but random per process execution - seed. This allows for fully repeatable tests and fuzzer like exploration across multiple runs.
Structure wise, the tests are previously found in the core integration tests for `sort_unstable` and alloc unit tests for `sort`. The new test-suite was developed to be a purely black-box approach, which makes integration testing the better place, because it can't accidentally rely on internal access. Because unwinding support is required the tests can't be in core, even if the implementation is, so they are now part of the alloc integration tests. Are there architectures that can only build and test core and not alloc? If so, do such platforms require sort testing? For what it's worth the current implementation state passes miri `--target mips64-unknown-linux-gnuabi64` which is big endian.
The test-suite also contains tests for properties that were and are given by the current and previous implementations, and likely relied upon by users but weren't tested. For example `self_cmp` tests that the two parameters `a` and `b` passed into the comparison function are never references to the same object, which if the user is sorting for example a `&mut [Mutex<i32>]` could lead to a deadlock.
Instead of using the hashed caller location as rand seed, it uses seconds since unix epoch / 10, which given timestamps in the CI should be reasonably easy to reproduce, but also allows fuzzer like space exploration.
---
Test run-time changes:
Setup:
```
Linux 6.10
rustc 1.83.0-nightly (f79a912d9 2024-09-18)
AMD Ryzen 9 5900X 12-Core Processor (Zen 3 micro-architecture)
CPU boost enabled.
```
master: e9df22f
Before core integration tests:
```
$ LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/coretests-219cbd0308a49e2f
Time (mean ± σ): 869.6 ms ± 21.1 ms [User: 1327.6 ms, System: 95.1 ms]
Range (min … max): 845.4 ms … 917.0 ms 10 runs
# MIRIFLAGS="-Zmiri-disable-isolation" to get real time
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/core
finished in 738.44s
```
After core integration tests:
```
$ LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/coretests-219cbd0308a49e2f
Time (mean ± σ): 865.1 ms ± 14.7 ms [User: 1283.5 ms, System: 88.4 ms]
Range (min … max): 836.2 ms … 885.7 ms 10 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/core
finished in 752.35s
```
Before alloc unit tests:
```
LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/alloc-19c15e6e8565aa54
Time (mean ± σ): 295.0 ms ± 9.9 ms [User: 719.6 ms, System: 35.3 ms]
Range (min … max): 284.9 ms … 319.3 ms 10 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/alloc
finished in 322.75s
```
After alloc unit tests:
```
LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/alloc-19c15e6e8565aa54
Time (mean ± σ): 97.4 ms ± 4.1 ms [User: 297.7 ms, System: 28.6 ms]
Range (min … max): 92.3 ms … 109.2 ms 27 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/alloc
finished in 309.18s
```
Before alloc integration tests:
```
$ LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/alloctests-439e7300c61a8046
Time (mean ± σ): 103.2 ms ± 1.7 ms [User: 135.7 ms, System: 39.4 ms]
Range (min … max): 99.7 ms … 107.3 ms 28 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/alloc
finished in 231.35s
```
After alloc integration tests:
```
$ LD_LIBRARY_PATH=build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/ hyperfine build/x86_64-unknown-linux-gnu/stage0-std/x86_64-unknown-linux-gnu/release/deps/alloctests-439e7300c61a8046
Time (mean ± σ): 379.8 ms ± 4.7 ms [User: 4620.5 ms, System: 1157.2 ms]
Range (min … max): 373.6 ms … 386.9 ms 10 runs
$ MIRIFLAGS="-Zmiri-disable-isolation" ./x.py miri library/alloc
finished in 449.24s
```
In my opinion the results don't change iterative library development or CI execution in meaningful ways. For example currently the library doc-tests take ~66s and incremental compilation takes 10+ seconds. However I only have limited knowledge of the various local development workflows that exist, and might be missing one that is significantly impacted by this change.
The `Box<T: Default>` impl currently calls `T::default()` before allocating
the `Box`.
Most `Default` impls are trivial, which should in theory allow
LLVM to construct `T: Default` directly in the `Box` allocation when calling
`<Box<T>>::default()`.
However, the allocation may fail, which necessitates calling `T's` destructor if it has one.
If the destructor is non-trivial, then LLVM has a hard time proving that it's
sound to elide, which makes it construct `T` on the stack first, and then copy it into the allocation.
Create an uninit `Box` first, and then write `T::default` into it, so that LLVM now only needs to prove
that the `T::default` can't panic, which should be trivial for most `Default` impls.
liballoc: introduce String, Vec const-slicing
This change `const`-qualifies many methods on `Vec` and `String`, notably `as_slice`, `as_str`, `len`. These changes are made behind the unstable feature flag `const_vec_string_slice`.
## Motivation
This is to support simultaneous variance over ownership and constness. I have an enum type that may contain either `String` or `&str`, and I want to produce a `&str` from it in a possibly-`const` context.
```rust
enum StrOrString<'s> {
Str(&'s str),
String(String),
}
impl<'s> StrOrString<'s> {
const fn as_str(&self) -> &str {
match self {
// In a const-context, I really only expect to see this variant, but I can't switch the implementation
// in some mode like #[cfg(const)] -- there has to be a single body
Self::Str(s) => s,
// so this is a problem, since it's not `const`
Self::String(s) => s.as_str(),
}
}
}
```
Currently `String` and `Vec` don't support this, but can without functional changes. Similar logic applies for `len`, `capacity`, `is_empty`.
## Changes
The essential thing enabling this change is that `Unique::as_ptr` is `const`. This lets us convert `RawVec::ptr` -> `Vec::as_ptr` -> `Vec::as_slice` -> `String::as_str`.
I had to move the `Deref` implementations into `as_{str,slice}` because `Deref` isn't `#[const_trait]`, but I would expect this change to be invisible up to inlining. I moved the `DerefMut` implementations as well for uniformity.
This change `const`-qualifies many methods on Vec and String, notably
`as_slice`, `as_str`, `len`. These changes are made behind the unstable
feature flag `const_vec_string_slice` with the following tracking issue:
https://github.com/rust-lang/rust/issues/129041
Mark some more types as having insignificant dtor
These were caught by https://github.com/rust-lang/rust/pull/129864#issuecomment-2376658407, which is implementing a lint for some changes in drop order for temporaries in tail expressions.
Specifically, the destructors of `CString` and the bitpacked repr for `std::io::Error` are insignificant insofar as they don't have side-effects on things like locking or synchronization; they just free memory.
See some discussion on #89144 for what makes a drop impl "significant"
This commit is a followup to https://github.com/rust-lang/rust/pull/124032. It
replaces the tests that test the various sort functions in the standard library
with a test-suite developed as part of
https://github.com/Voultapher/sort-research-rs. The current tests suffer a
couple of problems:
- They don't cover important real world patterns that the implementations take
advantage of and execute special code for.
- The input lengths tested miss out on code paths. For example, important safety
property tests never reach the quicksort part of the implementation.
- The miri side is often limited to `len <= 20` which means it very thoroughly
tests the insertion sort, which accounts for 19 out of 1.5k LoC.
- They are split into to core and alloc, causing code duplication and uneven
coverage.
- The randomness is not repeatable, as it
relies on `std:#️⃣:RandomState::new().build_hasher()`.
Most of these issues existed before
https://github.com/rust-lang/rust/pull/124032, but they are intensified by it.
One thing that is new and requires additional testing, is that the new sort
implementations specialize based on type properties. For example `Freeze` and
non `Freeze` execute different code paths.
Effectively there are three dimensions that matter:
- Input type
- Input length
- Input pattern
The ported test-suite tests various properties along all three dimensions,
greatly improving test coverage. It side-steps the miri issue by preferring
sampled approaches. For example the test that checks if after a panic the set of
elements is still the original one, doesn't do so for every single possible
panic opportunity but rather it picks one at random, and performs this test
across a range of input length, which varies the panic point across them. This
allows regular execution to easily test inputs of length 10k, and miri execution
up to 100 which covers significantly more code. The randomness used is tied to a
fixed - but random per process execution - seed. This allows for fully
repeatable tests and fuzzer like exploration across multiple runs.
Structure wise, the tests are previously found in the core integration tests for
`sort_unstable` and alloc unit tests for `sort`. The new test-suite was
developed to be a purely black-box approach, which makes integration testing the
better place, because it can't accidentally rely on internal access. Because
unwinding support is required the tests can't be in core, even if the
implementation is, so they are now part of the alloc integration tests. Are
there architectures that can only build and test core and not alloc? If so, do
such platforms require sort testing? For what it's worth the current
implementation state passes miri `--target mips64-unknown-linux-gnuabi64` which
is big endian.
The test-suite also contains tests for properties that were and are given by the
current and previous implementations, and likely relied upon by users but
weren't tested. For example `self_cmp` tests that the two parameters `a` and `b`
passed into the comparison function are never references to the same object,
which if the user is sorting for example a `&mut [Mutex<i32>]` could lead to a
deadlock.
Instead of using the hashed caller location as rand seed, it uses seconds since
unix epoch / 10, which given timestamps in the CI should be reasonably easy to
reproduce, but also allows fuzzer like space exploration.
Improve autovectorization of to_lowercase / to_uppercase functions
Refactor the code in the `convert_while_ascii` helper function to make it more suitable for auto-vectorization and also process the full ascii prefix of the string. The generic case conversion logic will only be invoked starting from the first non-ascii character.
The runtime on a microbenchmark with a small ascii-only input decreases from ~55ns to ~18ns per iteration. The new implementation also reduces the amount of unsafe code and encapsulates all unsafe inside the helper function.
Fixes#123712
update `compiler-builtins` to 0.1.126
this requires the addition of a bootstrap variant of the new `naked_asm!` macro
r? `@tgross35`
extracted from https://github.com/rust-lang/rust/pull/128651
Since the stabilization in #127679 has reached stage0, 1.82-beta, we can
start using `&raw` freely, and even the soft-deprecated `ptr::addr_of!`
and `ptr::addr_of_mut!` can stop allowing the unstable feature.
I intentionally did not change any documentation or tests, but the rest
of those macro uses are all now using `&raw const` or `&raw mut` in the
standard library.
Refactor the code in the `convert_while_ascii` helper function to make
it more suitable for auto-vectorization and also process the full ascii
prefix of the string. The generic case conversion logic will only be
invoked starting from the first non-ascii character.
The runtime on microbenchmarks with ascii-only inputs improves between
1.5x for short and 4x for long inputs on x86_64 and aarch64.
The new implementation also encapsulates all unsafe inside the
`convert_while_ascii` function.
Fixes#123712
Add str.as_str() for easy Deref to string slices
Working with `Box<str>` is cumbersome, because in places like `iter.filter()` it can end up being `&Box<str>` or even `&&Box<str>`, and such type doesn't always get auto-dereferenced as expected.
Dereferencing such box to `&str` requires ugly syntax like `&**boxed_str` or `&***boxed_str`, with the exact amount of `*`s.
`Box<str>` is [not easily comparable with other string types](https://github.com/rust-lang/rust/pull/129852) via `PartialEq`. `Box<str>` won't work for lookups in types like `HashSet<String>`, because `Borrow<String>` won't take types like `&Box<str>`. OTOH `set.contains(s.as_str())` works nicely regardless of levels of indirection.
`String` has a simple solution for this: the `as_str()` method, and `Box<str>` should too.
Avoid re-validating UTF-8 in `FromUtf8Error::into_utf8_lossy`
Part of the unstable feature `string_from_utf8_lossy_owned` - #129436
Refactor `FromUtf8Error::into_utf8_lossy` to copy valid UTF-8 bytes into the buffer, avoiding double validation of bytes.
Add tests that mirror the `String::from_utf8_lossy` tests.
Refactor `into_utf8_lossy` to copy valid UTF-8 bytes into the buffer,
avoiding double validation of bytes.
Add tests that mirror the `String::from_utf8_lossy` tests
[Clippy] Get rid of most `std` `match_def_path` usage, swap to diagnostic items.
Part of https://github.com/rust-lang/rust-clippy/issues/5393.
This was going to remove all `std` paths, but `SeekFrom` has issues being cleanly replaced with a diagnostic item as the paths are for variants, which currently cannot be diagnostic items.
This also, as a last step, categories the paths to help with future path removals.