mgca: Lower all const paths as `ConstArgKind::Path`
When `#![feature(min_generic_const_args)]` is enabled, we now lower all
const paths in generic arg position to `hir::ConstArgKind::Path`. We
then lower assoc const paths to `ty::ConstKind::Unevaluated` since we
can no longer use the anon const expression lowering machinery. In the
process of implementing this, I factored out `hir_ty_lowering` code that
is now shared between lowering assoc types and assoc consts.
This PR also introduces a `#[type_const]` attribute for trait assoc
consts that are allowed as const args. However, we still need to
implement code to check that assoc const definitions satisfy
`#[type_const]` if present (basically is it a const path or a
monomorphic anon const).
r? `@BoxyUwU`
Support raw-dylib link kind on ELF
raw-dylib is a link kind that allows rustc to link against a library without having any library files present.
This currently only exists on Windows. rustc will take all the symbols from raw-dylib link blocks and put them in an import library, where they can then be resolved by the linker.
While import libraries don't exist on ELF, it would still be convenient to have this same functionality. Not having the libraries present at build-time can be convenient for several reasons, especially cross-compilation. With raw-dylib, code linking against a library can be cross-compiled without needing to have these libraries available on the build machine. If the libc crate makes use of this, it would allow cross-compilation without having any libc available on the build machine. This is not yet possible with this implementation, at least against libc's like glibc that use symbol versioning. The raw-dylib kind could be extended with support for symbol versioning in the future.
This implementation is very experimental and I have not tested it very well. I have tested it for a toy example and the lz4-sys crate, where it was able to successfully link a binary despite not having a corresponding library at build-time.
I was inspired by Björn's comments in https://internals.rust-lang.org/t/bundle-zig-cc-in-rustup-by-default/22096/27
Tracking issue: #135694
r? bjorn3
try-job: aarch64-apple
try-job: x86_64-msvc-1
try-job: x86_64-msvc-2
try-job: test-various
When `#![feature(min_generic_const_args)]` is enabled, we now lower all
const paths in generic arg position to `hir::ConstArgKind::Path`. We
then lower assoc const paths to `ty::ConstKind::Unevaluated` since we
can no longer use the anon const expression lowering machinery. In the
process of implementing this, I factored out `hir_ty_lowering` code that
is now shared between lowering assoc types and assoc consts.
This PR also introduces a `#[type_const]` attribute for trait assoc
consts that are allowed as const args. However, we still need to
implement code to check that assoc const definitions satisfy
`#[type_const]` if present (basically is it a const path or a
monomorphic anon const).
Implement `#[cfg]` in `where` clauses
This PR implements #115590, which supports `#[cfg]` attributes in `where` clauses.
The biggest change is, that it adds `AttrsVec` and `NodeId` to the `ast::WherePredicate` and `HirId` to the `hir::WherePredicate`.
raw-dylib is a link kind that allows rustc to link against a library
without having any library files present.
This currently only exists on Windows. rustc will take all the symbols
from raw-dylib link blocks and put them in an import library, where they
can then be resolved by the linker.
While import libraries don't exist on ELF, it would still be convenient
to have this same functionality. Not having the libraries present at
build-time can be convenient for several reasons, especially
cross-compilation. With raw-dylib, code linking against a library can be
cross-compiled without needing to have these libraries available on the
build machine. If the libc crate makes use of this, it would allow
cross-compilation without having any libc available on the build
machine. This is not yet possible with this implementation, at least
against libc's like glibc that use symbol versioning.
The raw-dylib kind could be extended with support for symbol versioning
in the future.
This implementation is very experimental and I have not tested it very
well. I have tested it for a toy example and the lz4-sys crate, where it
was able to successfully link a binary despite not having a
corresponding library at build-time.
remove `#[rustc_intrinsic_must_be_overridde]`
In https://github.com/rust-lang/rust/pull/135031, we gained support for just leaving away the body. Now that the bootstrap compiler got bumped, stop using the old style and remove support for it.
r? `@oli-obk`
There are a few more mentions of this attribute in RA code that I didn't touch; Cc `@rust-lang/rust-analyzer`
Use `edition = "2024"` in the compiler (redux)
Most of this is binding mode changes, which I fixed by running `x.py fix`.
Also adds some miscellaneous `unsafe` blocks for new unsafe standard library functions (the setenv ones), and a missing `unsafe extern` block in some enzyme codegen code, and fixes some precise capturing lifetime changes (but only when they led to errors).
cc ``@ehuss`` ``@traviscross``
test building enzyme in CI
1) This PR fixes a significant compile-time regression, by only running the expensive autodiff pipeline, if the users pass the newly introduced Enable value to the `-Zautodiff=` flag. It updates the test(s) accordingly. It gives a nice error if users forget that.
2) It fixes macos support by explicitly linking against the Enzyme build folder. This doesn't cover CI macos yet.
3) It fixes the issue that setting ENZYME_RUNPASS was ignored by enzyme and in fact did not schedule enzyme's opt pass.
4) It also re-enables support for various other values for the autodiff flag, which were ignored since the refactor.
5) I merged some improvements to Enzyme core, which means we do not longer depend on LLVM being build with the Plugin Interface enabled.
6) Unrelated to other fixes, this changes `rustc_autodiff` to `EncodeCrossCrate::Yes`. It is not enough on it's own to enable usage of Enzyme in libraries, but it is for sure a piece of the fixes needed to get this to work.
try-job: x86_64-gnu
r? `@oli-obk`
Tracking:
- https://github.com/rust-lang/rust/issues/124509
Rollup of 8 pull requests
Successful merges:
- #134999 (Add cygwin target.)
- #136559 (Resolve named regions when reporting type test failures in NLL)
- #136660 (Use a trait to enforce field validity for union fields + `unsafe` fields + `unsafe<>` binder types)
- #136858 (Parallel-compiler-related cleanup)
- #136881 (cg_llvm: Reduce visibility of all functions in the llvm module)
- #136888 (Always perform discr read for never pattern in EUV)
- #136948 (Split out the `extern_system_varargs` feature)
- #136949 (Fix import in bench for wasm)
r? `@ghost`
`@rustbot` modify labels: rollup
Split out the `extern_system_varargs` feature
After the stabilization PR was opened, `extern "system"` functions were added to `extended_varargs_abi_support`. This has a number of questions regarding it that were not discussed and were somewhat surprising. It deserves to be considered as its own feature, separate from `extended_varargs_abi_support`.
Tracking issue:
- https://github.com/rust-lang/rust/issues/136946
After the stabilization PR was opened, `extern "system"` functions were
added to `extended_varargs_abi_support`. This has a number of questions
regarding it that were not discussed and were somewhat surprising.
It deserves to be considered as its own feature, separate from
`extended_varargs_abi_support`.
Stabilize target_feature_11
# Stabilization report
This is an updated version of https://github.com/rust-lang/rust/pull/116114, which is itself a redo of https://github.com/rust-lang/rust/pull/99767. Most of this commit and report were copied from those PRs. Thanks ```@LeSeulArtichaut``` and ```@calebzulawski!```
## Summary
Allows for safe functions to be marked with `#[target_feature]` attributes.
Functions marked with `#[target_feature]` are generally considered as unsafe functions: they are unsafe to call, cannot *generally* be assigned to safe function pointers, and don't implement the `Fn*` traits.
However, calling them from other `#[target_feature]` functions with a superset of features is safe.
```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}
fn foo() {
// Calling `avx2` here is unsafe, as we must ensure
// that AVX is available first.
unsafe {
avx2();
}
}
#[target_feature(enable = "avx2")]
fn bar() {
// Calling `avx2` here is safe.
avx2();
}
```
Moreover, once https://github.com/rust-lang/rust/pull/135504 is merged, they can be converted to safe function pointers in a context in which calling them is safe:
```rust
// Demonstration function
#[target_feature(enable = "avx2")]
fn avx2() {}
fn foo() -> fn() {
// Converting `avx2` to fn() is a compilation error here.
avx2
}
#[target_feature(enable = "avx2")]
fn bar() -> fn() {
// `avx2` coerces to fn() here
avx2
}
```
See the section "Closures" below for justification of this behaviour.
## Test cases
Tests for this feature can be found in [`tests/ui/target_feature/`](f6cb952dc1/tests/ui/target-feature).
## Edge cases
### Closures
* [target-feature 1.1: should closures inherit target-feature annotations? #73631](https://github.com/rust-lang/rust/issues/73631)
Closures defined inside functions marked with #[target_feature] inherit the target features of their parent function. They can still be assigned to safe function pointers and implement the appropriate `Fn*` traits.
```rust
#[target_feature(enable = "avx2")]
fn qux() {
let my_closure = || avx2(); // this call to `avx2` is safe
let f: fn() = my_closure;
}
```
This means that in order to call a function with #[target_feature], you must guarantee that the target-feature is available while the function, any closures defined inside it, as well as any safe function pointers obtained from target-feature functions inside it, execute.
This is usually ensured because target features are assumed to never disappear, and:
- on any unsafe call to a `#[target_feature]` function, presence of the target feature is guaranteed by the programmer through the safety requirements of the unsafe call.
- on any safe call, this is guaranteed recursively by the caller.
If you work in an environment where target features can be disabled, it is your responsibility to ensure that no code inside a target feature function (including inside a closure) runs after this (until the feature is enabled again).
**Note:** this has an effect on existing code, as nowadays closures do not inherit features from the enclosing function, and thus this strengthens a safety requirement. It was originally proposed in #73631 to solve this by adding a new type of UB: “taking a target feature away from your process after having run code that uses that target feature is UB” .
This was motivated by userspace code already assuming in a few places that CPU features never disappear from a program during execution (see i.e. 2e29bdf908/crates/std_detect/src/detect/arch/x86.rs); however, concerns were raised in the context of the Linux kernel; thus, we propose to relax that requirement to "causing the set of usable features to be reduced is unsafe; when doing so, the programmer is required to ensure that no closures or safe fn pointers that use removed features are still in scope".
* [Fix #[inline(always)] on closures with target feature 1.1 #111836](https://github.com/rust-lang/rust/pull/111836)
Closures accept `#[inline(always)]`, even within functions marked with `#[target_feature]`. Since these attributes conflict, `#[inline(always)]` wins out to maintain compatibility.
### ABI concerns
* [The extern "C" ABI of SIMD vector types depends on target features #116558](https://github.com/rust-lang/rust/issues/116558)
The ABI of some types can change when compiling a function with different target features. This could have introduced unsoundness with target_feature_11, but recent fixes (#133102, #132173) either make those situations invalid or make the ABI no longer dependent on features. Thus, those issues should no longer occur.
### Special functions
The `#[target_feature]` attribute is forbidden from a variety of special functions, such as main, current and future lang items (e.g. `#[start]`, `#[panic_handler]`), safe default trait implementations and safe trait methods.
This was not disallowed at the time of the first stabilization PR for target_features_11, and resulted in the following issues/PRs:
* [`#[target_feature]` is allowed on `main` #108645](https://github.com/rust-lang/rust/issues/108645)
* [`#[target_feature]` is allowed on default implementations #108646](https://github.com/rust-lang/rust/issues/108646)
* [#[target_feature] is allowed on #[panic_handler] with target_feature 1.1 #109411](https://github.com/rust-lang/rust/issues/109411)
* [Prevent using `#[target_feature]` on lang item functions #115910](https://github.com/rust-lang/rust/pull/115910)
## Documentation
* Reference: [Document the `target_feature_11` feature reference#1181](https://github.com/rust-lang/reference/pull/1181)
---
cc tracking issue https://github.com/rust-lang/rust/issues/69098
cc ```@workingjubilee```
cc ```@RalfJung```
r? ```@rust-lang/lang```
Prevent generic pattern types from being used in libstd
Pattern types should follow the same rules that patterns follow. So a pattern type range must not wrap and not be empty. While we reject such invalid ranges at layout computation time, that only happens during monomorphization in the case of const generics. This is the exact same issue as other const generic math has, and since there's no solution there yet, I put these pattern types behind a separate incomplete feature.
These are not necessary for the pattern types MVP (replacing the layout range attributes in libcore and rustc).
cc #136574 (new tracking issue for the `generic_pattern_types` feature gate)
r? ``@lcnr``
cc ``@scottmcm`` ``@joshtriplett``
#[contracts::requires(...)] + #[contracts::ensures(...)]
cc https://github.com/rust-lang/rust/issues/128044
Updated contract support: attribute syntax for preconditions and postconditions, implemented via a series of desugarings that culminates in:
1. a compile-time flag (`-Z contract-checks`) that, similar to `-Z ub-checks`, attempts to ensure that the decision of enabling/disabling contract checks is delayed until the end user program is compiled,
2. invocations of lang-items that handle invoking the precondition, building a checker for the post-condition, and invoking that post-condition checker at the return sites for the function, and
3. intrinsics for the actual evaluation of pre- and post-condition predicates that third-party verification tools can intercept and reinterpret for their own purposes (e.g. creating shims of behavior that abstract away the function body and replace it solely with the pre- and post-conditions).
Known issues:
* My original intent, as described in the MCP (https://github.com/rust-lang/compiler-team/issues/759) was to have a rustc-prefixed attribute namespace (like rustc_contracts::requires). But I could not get things working when I tried to do rewriting via a rustc-prefixed builtin attribute-macro. So for now it is called `contracts::requires`.
* Our attribute macro machinery does not provide direct support for attribute arguments that are parsed like rust expressions. I spent some time trying to add that (e.g. something that would parse the attribute arguments as an AST while treating the remainder of the items as a token-tree), but its too big a lift for me to undertake. So instead I hacked in something approximating that goal, by semi-trivially desugaring the token-tree attribute contents into internal AST constucts. This may be too fragile for the long-term.
* (In particular, it *definitely* breaks when you try to add a contract to a function like this: `fn foo1(x: i32) -> S<{ 23 }> { ... }`, because its token-tree based search for where to inject the internal AST constructs cannot immediately see that the `{ 23 }` is within a generics list. I think we can live for this for the short-term, i.e. land the work, and continue working on it while in parallel adding a new attribute variant that takes a token-tree attribute alongside an AST annotation, which would completely resolve the issue here.)
* the *intent* of `-Z contract-checks` is that it behaves like `-Z ub-checks`, in that we do not prematurely commit to including or excluding the contract evaluation in upstream crates (most notably, `core` and `std`). But the current test suite does not actually *check* that this is the case. Ideally the test suite would be extended with a multi-crate test that explores the matrix of enabling/disabling contracts on both the upstream lib and final ("leaf") bin crates.
Implement unstable `new_range` feature
Switches `a..b`, `a..`, and `a..=b` to resolve to the new range types.
For rust-lang/rfcs#3550
Tracking issue #123741
also adds the re-export that was missed in the original implementation of `new_range_api`
Add `kl` and `widekl` target features, and the feature gate
This is an effort towards #134813. This PR adds the target-features and the feature gate to `rustc`
<!--
```@rustbot``` label O-x86_64 O-x86_32 A-target-feature
r? compiler
-->
This has now been approved as a language feature and no longer needs
a `rustc_` prefix.
Also change the `contracts` feature to be marked as incomplete and
`contracts_internals` as internal.
The extended syntax for function signature that includes contract clauses
should never be user exposed versus the interface we want to ship
externally eventually.
Add `#[optimize(none)]`
cc #54882
This extends the `optimize` attribute to add `none`, which corresponds to the LLVM `OptimizeNone` attribute.
Not sure if an MCP is required for this, happy to file one if so.
This CL makes a number of small changes to dyn compatibility errors:
- "object safety" has been renamed to "dyn-compatibility" throughout
- "Convert to enum" suggestions are no longer generated when there
exists a type-generic impl of the trait or an impl for `dyn OtherTrait`
- Several error messages are reorganized for user readability
Additionally, the dyn compatibility error creation code has been
split out into functions.
cc #132713
cc #133267
remove support for the (unstable) #[start] attribute
As explained by `@Noratrieb:`
`#[start]` should be deleted. It's nothing but an accidentally leaked implementation detail that's a not very useful mix between "portable" entrypoint logic and bad abstraction.
I think the way the stable user-facing entrypoint should work (and works today on stable) is pretty simple:
- `std`-using cross-platform programs should use `fn main()`. the compiler, together with `std`, will then ensure that code ends up at `main` (by having a platform-specific entrypoint that gets directed through `lang_start` in `std` to `main` - but that's just an implementation detail)
- `no_std` platform-specific programs should use `#![no_main]` and define their own platform-specific entrypoint symbol with `#[no_mangle]`, like `main`, `_start`, `WinMain` or `my_embedded_platform_wants_to_start_here`. most of them only support a single platform anyways, and need cfg for the different platform's ways of passing arguments or other things *anyways*
`#[start]` is in a super weird position of being neither of those two. It tries to pretend that it's cross-platform, but its signature is a total lie. Those arguments are just stubbed out to zero on ~~Windows~~ wasm, for example. It also only handles the platform-specific entrypoints for a few platforms that are supported by `std`, like Windows or Unix-likes. `my_embedded_platform_wants_to_start_here` can't use it, and neither could a libc-less Linux program.
So we have an attribute that only works in some cases anyways, that has a signature that's a total lie (and a signature that, as I might want to add, has changed recently, and that I definitely would not be comfortable giving *any* stability guarantees on), and where there's a pretty easy way to get things working without it in the first place.
Note that this feature has **not** been RFCed in the first place.
*This comment was posted [in May](https://github.com/rust-lang/rust/issues/29633#issuecomment-2088596042) and so far nobody spoke up in that issue with a usecase that would require keeping the attribute.*
Closes https://github.com/rust-lang/rust/issues/29633
try-job: x86_64-gnu-nopt
try-job: x86_64-msvc-1
try-job: x86_64-msvc-2
try-job: test-various
Match Ergonomics 2024: document and reorganize the currently-implemented feature gates
The hope here is to make it easier to adjust, understand, and test the experimental pattern typing rules implemented in the compiler. This PR doesn't (or at isn't intended to) change any behavior or add any new tests; I'll be handling that later. I've also included some reasoning/commentary on the more involved changes in the commit messages.
Relevant tracking issue: #123076
r? `@Nadrieril`
Add gpu-kernel calling convention
The amdgpu-kernel calling convention was reverted in commit f6b21e90d1 (#120495 and https://github.com/rust-lang/rust-analyzer/pull/16463) due to inactivity in the amdgpu target.
Introduce a `gpu-kernel` calling convention that translates to `ptx_kernel` or `amdgpu_kernel`, depending on the target that rust compiles for.
Tracking issue: #135467
amdgpu target tracking issue: #135024
The amdgpu-kernel calling convention was reverted in commit
f6b21e90d1 due to inactivity in the amdgpu
target.
Introduce a `gpu-kernel` calling convention that translates to
`ptx_kernel` or `amdgpu_kernel`, depending on the target that rust
compiles for.
Adds `#[rustc_force_inline]` which is similar to always inlining but
reports an error if the inlining was not possible, and which always
attempts to inline annotated items, regardless of optimisation levels.
It can only be applied to free functions to guarantee that the MIR
inliner will be able to resolve calls.
This aims to reduce the complexity needed in the boolean logic for telling which
rules we're using to type patterns. If we still want the functionality this
removes, we can re-add it later, after some cleanup to pattern typing.
Add support for wasm exception handling to Emscripten target
This is a draft because we need some additional setting for the Emscripten target to select between the old exception handling and the new exception handling. I don't know how to add a setting like that, would appreciate advice from Rust folks. We could maybe choose to use the new exception handling if `Ctarget-feature=+exception-handling` is passed? I tried this but I get errors from llvm so I'm not doing it right.
turn rustc_box into an intrinsic
I am not entirely sure why this was made a special magic attribute, but an intrinsic seems like a more natural way to add magic expressions to the language.
This commit splits the `#[rustc_deny_explicit_impl(implement_via_object = ...)]` attribute
into two attributes `#[rustc_deny_explicit_impl]` and `#[rustc_do_not_implement_via_object]`.
This allows us to have special traits that can have user-defined impls but do not have the
automatic trait impl for trait objects (`impl Trait for dyn Trait`).
This commit seeks to stabilize the `#[diagnostic::do_not_recommend]`
attribute.
This attribute was first proposed as `#[do_not_recommend`] attribute in
RFC 2397 (https://github.com/rust-lang/rfcs/pull/2397). It gives the
crate authors the ability to not suggest to the compiler to not show
certain traits in it's error messages. With the presence of the
`#[diagnostic]` tool attribute namespace it was decided to move the
attribute there, as that lowers the amount of guarantees the compiler
needs to give about the exact way this influences error messages. It
turns the attribute into a hint which can be ignored. In addition to the
original proposed functionality this attribute now also hides the marked
trait in help messages ("This trait is implemented by: ").
The attribute does not accept any argument and can only be placed on
trait implementations. If it is placed somewhere else a lint warning is
emitted and the attribute is otherwise ignored. If an argument is
detected a lint warning is emitted and the argument is ignored. This
follows the rules outlined by the diagnostic namespace.
This attribute allows crates like diesel to improve their error messages
drastically. The most common example here is the following error
message:
```
error[E0277]: the trait bound `&str: Expression` is not satisfied
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:53:15
|
LL | SelectInt.check("bar");
| ^^^^^ the trait `Expression` is not implemented for `&str`, which is required by `&str: AsExpression<Integer>`
|
= help: the following other types implement trait `Expression`:
Bound<T>
SelectInt
note: required for `&str` to implement `AsExpression<Integer>`
--> /home/weiznich/Documents/rust/rust/tests/ui/diagnostic_namespace/do_not_recommend.rs:26:13
|
LL | impl<T, ST> AsExpression<ST> for T
| ^^^^^^^^^^^^^^^^ ^
LL | where
LL | T: Expression<SqlType = ST>,
| ------------------------ unsatisfied trait bound introduced here
```
By applying the new attribute to the wild card trait implementation of
`AsExpression` for `T: Expression` the error message becomes:
```
error[E0277]: the trait bound `&str: AsExpression<Integer>` is not satisfied
--> $DIR/as_expression.rs:55:15
|
LL | SelectInt.check("bar");
| ^^^^^ the trait `AsExpression<Integer>` is not implemented for `&str`
|
= help: the trait `AsExpression<Text>` is implemented for `&str`
= help: for that trait implementation, expected `Text`, found `Integer`
```
which makes it much easier for users to understand that they are facing
a type mismatch.
Other explored example usages included
* This standard library error message: https://github.com/rust-lang/rust/pull/128008
* That bevy derived example:
e1f3068995/tests/ui/diagnostic_namespace/do_not_recommend/supress_suggestions_in_help.rs (No
more tuple pyramids)
Fixes#51992
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Rollup of 7 pull requests
Successful merges:
- #133900 (Advent of `tests/ui` (misc cleanups and improvements) [1/N])
- #133937 (Keep track of parse errors in `mod`s and don't emit resolve errors for paths involving them)
- #133938 (`rustc_mir_dataflow` cleanups, including some renamings)
- #134058 (interpret: reduce usage of TypingEnv::fully_monomorphized)
- #134130 (Stop using driver queries in the public API)
- #134140 (Add AST support for unsafe binders)
- #134229 (Fix typos in docs on provenance)
r? `@ghost`
`@rustbot` modify labels: rollup
forbid toggling x87 and fpregs on hard-float targets
Part of https://github.com/rust-lang/rust/issues/116344, follow-up to https://github.com/rust-lang/rust/pull/129884:
The `x87` target feature on x86 and the `fpregs` target feature on ARM must not be disabled on a hardfloat target, as that would change the float ABI. However, *enabling* `fpregs` on ARM is [explicitly requested](https://github.com/rust-lang/rust/issues/130988) as it seems to be useful. Therefore, we need to refine the distinction of "forbidden" target features and "allowed" target features: all (un)stable target features can determine on a per-target basis whether they should be allowed to be toggled or not. `fpregs` then checks whether the current target has the `soft-float` feature, and if yes, `fpregs` is permitted -- otherwise, it is not. (Same for `x87` on x86).
Also fixes https://github.com/rust-lang/rust/issues/132351. Since `fpregs` and `x87` can be enabled on some builds and disabled on others, it would make sense that one can query it via `cfg`. Therefore, I made them behave in `cfg` like any other unstable target feature.
The first commit prepares the infrastructure, but does not change behavior. The second commit then wires up `fpregs` and `x87` with that new infrastructure.
r? `@workingjubilee`
Add AST support for unsafe binders
I'm splitting up #130514 into pieces. It's impossible for me to keep up with a huge PR like that. I'll land type system support for this next, probably w/o MIR lowering, which will come later.
r? `@oli-obk`
cc `@BoxyUwU` and `@lcnr` who also may want to look at this, though this PR doesn't do too much yet
Initial implementation of `#[feature(default_field_values]`, proposed in https://github.com/rust-lang/rfcs/pull/3681.
Support default fields in enum struct variant
Allow default values in an enum struct variant definition:
```rust
pub enum Bar {
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Allow using `..` without a base on an enum struct variant
```rust
Bar::Foo { .. }
```
`#[derive(Default)]` doesn't account for these as it is still gating `#[default]` only being allowed on unit variants.
Support `#[derive(Default)]` on enum struct variants with all defaulted fields
```rust
pub enum Bar {
#[default]
Foo {
bar: S = S,
baz: i32 = 42 + 3,
}
}
```
Check for missing fields in typeck instead of mir_build.
Expand test with `const` param case (needs `generic_const_exprs` enabled).
Properly instantiate MIR const
The following works:
```rust
struct S<A> {
a: Vec<A> = Vec::new(),
}
S::<i32> { .. }
```
Add lint for default fields that will always fail const-eval
We *allow* this to happen for API writers that might want to rely on users'
getting a compile error when using the default field, different to the error
that they would get when the field isn't default. We could change this to
*always* error instead of being a lint, if we wanted.
This will *not* catch errors for partially evaluated consts, like when the
expression relies on a const parameter.
Suggestions when encountering `Foo { .. }` without `#[feature(default_field_values)]`:
- Suggest adding a base expression if there are missing fields.
- Suggest enabling the feature if all the missing fields have optional values.
- Suggest removing `..` if there are no missing fields.
Stabilize `extended_varargs_abi_support`
I think that is everything? If there is any documentation regarding `extern` and/or varargs to correct, let me know, some quick greps suggest that there might be none.
Tracking issue: https://github.com/rust-lang/rust/issues/100189
Support input/output in vector registers of s390x inline assembly (under asm_experimental_reg feature)
This extends currently clobber-only vector registers (`vreg`) support to allow passing `#[repr(simd)]` types, floats (f32/f64/f128), and integers (i32/i64/i128) as input/output.
This is unstable and gated under new `#![feature(asm_experimental_reg)]` (tracking issue: https://github.com/rust-lang/rust/issues/133416). If the feature is not enabled, only clober is supported as before.
| Architecture | Register class | Target feature | Allowed types |
| ------------ | -------------- | -------------- | -------------- |
| s390x | `vreg` | `vector` | `i32`, `f32`, `i64`, `f64`, `i128`, `f128`, `i8x16`, `i16x8`, `i32x4`, `i64x2`, `f32x4`, `f64x2` |
This matches the list of types that are supported by the vector registers in LLVM:
https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/SystemZ/SystemZRegisterInfo.td#L301-L313
In addition to `core::simd` types and floats listed above, custom `#[repr(simd)]` types of the same size and type are also allowed. All allowed types other than i32/f32/i64/f64/i128, and relevant target features are currently unstable.
Currently there is no SIMD type for s390x in `core::arch`, but this is tracked in https://github.com/rust-lang/rust/issues/130869.
cc https://github.com/rust-lang/rust/issues/130869 about vector facility support in s390x
cc https://github.com/rust-lang/rust/issues/125398 & https://github.com/rust-lang/rust/issues/116909 about f128 support in asm
`@rustbot` label +O-SystemZ +A-inline-assembly