Put all cached values into a central struct instead of just the stable hash
cc `@nnethercote`
this allows re-use of the type for Predicate without duplicating all the logic for the non-hash cached fields
Add StableOrd trait as proposed in MCP 533.
The `StableOrd` trait can be used to mark types as having a stable sort order across compilation sessions. Collections that sort their items in a stable way can safely implement HashStable by hashing items in sort order.
See https://github.com/rust-lang/compiler-team/issues/533 for more information.
Rollup of 9 pull requests
Successful merges:
- #104199 (Keep track of the start of the argument block of a closure)
- #105050 (Remove useless borrows and derefs)
- #105153 (Create a hacky fail-fast mode that stops tests at the first failure)
- #105164 (Restore `use` suggestion for `dyn` method call requiring `Sized`)
- #105193 (Disable coverage instrumentation for naked functions)
- #105200 (Remove useless filter in unused extern crate check.)
- #105201 (Do not call fn_sig on non-functions.)
- #105208 (Add AmbiguityError for inconsistent resolution for an import)
- #105214 (update Miri)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Remove useless borrows and derefs
They are nothing more than noise.
<sub>These are not all of them, but my clippy started crashing (stack overflow), so rip :(</sub>
The StableOrd trait can be used to mark types as having a stable
sort order across compilation sessions. Collections that sort their
items in a stable way can safely implement HashStable by
hashing items in sort order.
Use liballoc's specialised in-place vec collection
liballoc already specialises in-place vector collection, so manually
reimplementing it in `IdFunctor::try_map_id` was superfluous.
Use Set instead of Vec in transitive_relation
Helps with #103195. It doesn't fix the underlying quadraticness but it makes it _a lot_ faster to an extent where even doubling the amount of nested references still takes less than two seconds (50s on nightly).
I want to see whether this causes regressions (because the vec was usually quite small) or improvements (as lookup for bigger sets is now much faster) in real code.
Remove "execute" bit from lock file permissions
Previously, flock would set the "execute" bit on Rust lock files. That makes no sense.
This patch clears the "execute" bit on Rust lock files.
See issue #102531.
Remove `-Ztime`
Because it has a lot of overlap with `-Ztime-passes` but is generally less useful. Plus some related cleanups.
Best reviewed one commit at a time.
r? `@davidtwco`
`print_time_passes_entry` unconditionally prints data about a pass. The
most commonly used call site, in `VerboseTimingGuard::drop`, guards it
with a `should_print_passes` test. But there are a couple of other call
sites that don't do that test.
This commit moves the `should_print_passes` test within
`print_time_passes_entry` so that all passes are treated equally.
The compiler currently has `-Ztime` and `-Ztime-passes`. I've used
`-Ztime-passes` for years but only recently learned about `-Ztime`.
What's the difference? Let's look at the `-Zhelp` output:
```
-Z time=val -- measure time of rustc processes (default: no)
-Z time-passes=val -- measure time of each rustc pass (default: no)
```
The `-Ztime-passes` description is clear, but the `-Ztime` one is less so.
Sounds like it measures the time for the entire process?
No. The real difference is that `-Ztime-passes` prints out info about passes,
and `-Ztime` does the same, but only for a subset of those passes. More
specifically, there is a distinction in the profiling code between a "verbose
generic activity" and an "extra verbose generic activity". `-Ztime-passes`
prints both kinds, while `-Ztime` only prints the first one. (It took me
a close reading of the source code to determine this difference.)
In practice this distinction has low value. Perhaps in the past the "extra
verbose" output was more voluminous, but now that we only print stats for a
pass if it exceeds 5ms or alters the RSS, `-Ztime-passes` is less spammy. Also,
a lot of the "extra verbose" cases are for individual lint passes, and you need
to also use `-Zno-interleave-lints` to see those anyway.
Therefore, this commit removes `-Ztime` and the associated machinery. One thing
to note is that the existing "extra verbose" activities all have an extra
string argument, so the commit adds the ability to accept an extra argument to
the "verbose" activities.
Make cycle errors recoverable
In particular, this allows rustdoc to recover from cycle errors when normalizing associated types for documentation.
In the past, ```@jackh726``` has said we need to be careful about overflow errors: https://github.com/rust-lang/rust/pull/91430#issuecomment-983997013
> Off the top of my head, we definitely should be careful about treating overflow errors the same as
"not implemented for some reason" errors. Otherwise, you could end up with behavior that is
different depending on recursion depth. But, that might be context-dependent.
But cycle errors should be safe to unconditionally report; they don't depend on the recursion depth, they will always be an error whenever they're encountered.
Helps with https://github.com/rust-lang/rust/issues/81091.
r? ```@lcnr``` cc ```@matthewjasper```
In particular, this allows rustdoc to recover from cycle errors when normalizing associated types for documentation.
In the past, `@jackh726` has said we need to be careful about overflow errors:
> Off the top of my head, we definitely should be careful about treating overflow errors the same as
"not implemented for some reason" errors. Otherwise, you could end up with behavior that is
different depending on recursion depth. But, that might be context-dependent.
But cycle errors should be safe to unconditionally report; they don't depend on the recursion depth, they will always be an error whenever they're encountered.
On later stages, the feature is already stable.
Result of running:
rg -l "feature.let_else" compiler/ src/librustdoc/ library/ | xargs sed -s -i "s#\\[feature.let_else#\\[cfg_attr\\(bootstrap, feature\\(let_else\\)#"
Replace `rustc_data_structures::thin_vec::ThinVec` with `thin_vec::ThinVec`
`rustc_data_structures::thin_vec::ThinVec` looks like this:
```
pub struct ThinVec<T>(Option<Box<Vec<T>>>);
```
It's just a zero word if the vector is empty, but requires two
allocations if it is non-empty. So it's only usable in cases where the
vector is empty most of the time.
This commit removes it in favour of `thin_vec::ThinVec`, which is also
word-sized, but stores the length and capacity in the same allocation as
the elements. It's good in a wider variety of situation, e.g. in enum
variants where the vector is usually/always non-empty.
The commit also:
- Sorts some `Cargo.toml` dependency lists, to make additions easier.
- Sorts some `use` item lists, to make additions easier.
- Changes `clean_trait_ref_with_bindings` to take a
`ThinVec<TypeBinding>` rather than a `&[TypeBinding]`, because this
avoid some unnecessary allocations.
r? `@spastorino`
Fix a bunch of typo
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos