Actually abort in -Zpanic-abort-tests
When a test fails in panic=abort, it can be useful to have a debugger or other tooling hook into the `abort()` call for debugging. Doing this some other way would require it to hard code details of Rust's panic machinery.
There's no reason we couldn't have done this in the first place; using a single exit code for "success" or "failed" was just simpler. Now we are aware of the special exit codes for posix and windows platforms, logging a special error if an unrecognized code is used on those platforms, and falling back to just "failure" on other platforms.
This continues to account for `#[should_panic]` inside the test process itself, so there's no risk of misinterpreting a random call to `abort()` as an expected panic. Any exit code besides `TR_OK` is logged as a test failure.
As an added benefit, this would allow us to support panic=immediate_abort (but not `#[should_panic]`), without noise about unexpected exit codes when a test fails.
When encountering an `if let` tail expression without an `else` arm for an
enum with a single variant, suggest writing an irrefutable `let` binding
instead.
```
error[E0317]: `if` may be missing an `else` clause
--> $DIR/irrefutable-if-let-without-else.rs:8:5
|
LL | fn foo(x: Enum) -> i32 {
| --- expected `i32` because of this return type
LL | / if let Enum::Variant(value) = x {
LL | | value
LL | | }
| |_____^ expected `i32`, found `()`
|
= note: `if` expressions without `else` evaluate to `()`
= help: consider adding an `else` block that evaluates to the expected type
help: consider using an irrefutable `let` binding instead
|
LL ~ let Enum::Variant(value) = x;
LL ~ value
|
```
Fix#61788.
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
Introduce support for `async` bound modifier on `Fn*` traits
Adds `async` to the list of `TraitBoundModifiers`, which instructs AST lowering to map the trait to an async flavor of the trait. For now, this is only supported for `Fn*` to `AsyncFn*`, and I expect that this manual mapping via lang items will be replaced with a better system in the future.
The motivation for adding these bounds is to separate the users of async closures from the exact trait desugaring of their callable bounds. Instead of users needing to be concerned with the `AsyncFn` trait, they should be able to write `async Fn()` and it will desugar to whatever underlying trait we decide is best for the lowering of async closures.
Note: rustfmt support can be done in the rustfmt repo after a subtree sync.
pattern_analysis: Gracefully abort on type incompatibility
This leaves the option for a consumer of the crate to return `Err` instead of panicking on type error. rust-analyzer could use that (e.g. https://github.com/rust-lang/rust-analyzer/issues/15808).
Since the only use of `TypeCx::bug` is in `Constructor::is_covered_by`, it is tempting to return `false` instead of `Err()`, but that would cause "non-exhaustive match" false positives.
r? `@compiler-errors`
[`redundant_locals`]: take by-value closure captures into account
Fixes#12225
The same problem in the linked issue can happen to regular closures too, and conveniently async blocks are closures in the HIR so fixing closures will fix async blocks as well.
changelog: [`redundant_locals`]: avoid linting when redefined variable is captured by-value
new lint: `manual_c_str_literals`
With rust-lang/rust#117472 merged and `c""` syntax stabilized, I think it'd be nice to have a lint for using `CStr::from_ptr` (and similar constructors) with a string literal as an argument.
We can probably also lint `"foo\0".as_ptr()` and suggest `c"foo".as_ptr()`. I might add that to this PR tomorrow if I find the time.
The byte string literal to c string literal rewriting is ugly but oh well.
changelog: new lint: `manual_c_str_literals`
[#11919](https://github.com/rust-lang/rust-clippy/pull/11919)
Rollup of 8 pull requests
Successful merges:
- #113833 (`std::error::Error` -> Trait Implementations: lifetimes consistency improvement)
- #115386 (PartialEq, PartialOrd: update and synchronize handling of transitive chains)
- #116284 (make matching on NaN a hard error, and remove the rest of illegal_floating_point_literal_pattern)
- #118960 (Add LocalWaker and ContextBuilder types to core, and LocalWake trait to alloc.)
- #120384 (Use `<T, U>` for array/slice equality `impl`s)
- #120518 (riscv only supports split_debuginfo=off for now)
- #120657 (Remove unused struct)
- #120661 (target: default to the medium code model on LoongArch targets)
r? `@ghost`
`@rustbot` modify labels: rollup
All the other `emit`/`emit_diagnostic` methods were recently made
consuming (e.g. #119606), but this one wasn't. But it makes sense to.
Much of this is straightforward, and lots of `clone` calls are avoided.
There are a couple of tricky bits.
- `Emitter::primary_span_formatted` no longer takes a `Diagnostic` and
returns a pair. Instead it takes the two fields from `Diagnostic` that
it used (`span` and `suggestions`) as `&mut`, and modifies them. This
is necessary to avoid the cloning of `diag.children` in two emitters.
- `from_errors_diagnostic` is rearranged so various uses of `diag` occur
before the consuming `emit_diagnostic` call.
target: default to the medium code model on LoongArch targets
The Rust LoongArch targets have been using the default LLVM code model so far, which is "small" in LLVM-speak and "normal" in LoongArch-speak. As [described][1] in the "Code Model" section of LoongArch ELF psABI spec v20231219, one can only make function calls as far as ±128MiB with the "normal" code model; this is insufficient for very large software containing Rust components that needs to be linked into the big text section, such as Chromium.
Because:
* we do not want to ask users to recompile std if they are to build such software,
* objects compiled with larger code models can be linked with those with smaller code models without problems, and
* the "medium" code model is comparable to the "small"/"normal" one performance-wise (same data access pattern; each function call becomes 2-insn long and indirect, but this may be relaxed back into the direct 1-insn form in a future LLVM version), but is able to perform function calls within ±128GiB,
it is better to just switch the targets to the "medium" code model, which is also "medium" in LLVM-speak.
[1]: https://github.com/loongson/la-abi-specs/blob/v2.30/laelf.adoc#code-models