This commit makes type folding more like the way chalk does it.
Currently, `TypeFoldable` has `fold_with` and `super_fold_with` methods.
- `fold_with` is the standard entry point, and defaults to calling
`super_fold_with`.
- `super_fold_with` does the actual work of traversing a type.
- For a few types of interest (`Ty`, `Region`, etc.) `fold_with` instead
calls into a `TypeFolder`, which can then call back into
`super_fold_with`.
With the new approach, `TypeFoldable` has `fold_with` and
`TypeSuperFoldable` has `super_fold_with`.
- `fold_with` is still the standard entry point, *and* it does the
actual work of traversing a type, for all types except types of
interest.
- `super_fold_with` is only implemented for the types of interest.
Benefits of the new model.
- I find it easier to understand. The distinction between types of
interest and other types is clearer, and `super_fold_with` doesn't
exist for most types.
- With the current model is easy to get confused and implement a
`super_fold_with` method that should be left defaulted. (Some of the
precursor commits fixed such cases.)
- With the current model it's easy to call `super_fold_with` within
`TypeFolder` impls where `fold_with` should be called. The new
approach makes this mistake impossible, and this commit fixes a number
of such cases.
- It's potentially faster, because it avoids the `fold_with` ->
`super_fold_with` call in all cases except types of interest. A lot of
the time the compile would inline those away, but not necessarily
always.
Only crate root def-ids don't have a parent, and in majority of cases the argument of `DefIdTree::parent` cannot be a crate root.
So we now panic by default in `parent` and introduce a new non-panicing function `opt_parent` for cases where the argument can be a crate root.
Same applies to `local_parent`/`opt_local_parent`.
Spellchecking compiler comments
This PR cleans up the rest of the spelling mistakes in the compiler comments. This PR does not change any literal or code spelling issues.
This allows to compute the `BodyOwnerKind` from `DefKind` only, and
removes a direct dependency of some MIR queries onto HIR.
As a side effect, it also simplifies metadata, since we don't need 4
flavours of `EntryKind::*Static` any more.
There are a few places were we have to construct it, though, and a few
places that are more invasive to change. To do this, we create a
constructor with a long obvious name.
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
Specifically, rename the `Const` struct as `ConstS` and re-introduce `Const` as
this:
```
pub struct Const<'tcx>(&'tcx Interned<ConstS>);
```
This now matches `Ty` and `Predicate` more closely, including using
pointer-based `eq` and `hash`.
Notable changes:
- `mk_const` now takes a `ConstS`.
- `Const` was copy, despite being 48 bytes. Now `ConstS` is not, so need a
we need separate arena for it, because we can't use the `Dropless` one any
more.
- Many `&'tcx Const<'tcx>`/`&Const<'tcx>` to `Const<'tcx>` changes
- Many `ct.ty` to `ct.ty()` and `ct.val` to `ct.val()` changes.
- Lots of tedious sigil fiddling.
improve `_` constants in item signature handling
removing the "type" from the error messages does slightly worsen the error messages for types, but figuring out whether the placeholder is for a type or a constant and correctly dealing with that seemed fairly difficult to me so I took the easy way out ✨ Imo the error message is still clear enough.
r? `@BoxyUwU` cc `@estebank`
Replace use of `ty()` on term and use it in more places. This will allow more flexibility in the
future, but slightly worried it allows items which are consts which only accept types.
ProjectionPredicate should be able to handle both associated types and consts so this adds the
first step of that. It mainly just pipes types all the way down, not entirely sure how to handle
consts, but hopefully that'll come with time.
The field is also renamed from `ident` to `name. In most cases,
we don't actually need the `Span`. A new `ident` method is added
to `VariantDef` and `FieldDef`, which constructs the full `Ident`
using `tcx.def_ident_span()`. This method is used in the cases
where we actually need an `Ident`.
This makes incremental compilation properly track changes
to the `Span`, without all of the invalidations caused by storing
a `Span` directly via an `Ident`.
Mak DefId to AccessLevel map in resolve for export
hir_id to accesslevel in resolve and applied in privacy
using local def id
removing tracing probes
making function not recursive and adding comments
Move most of Exported/Public res to rustc_resolve
moving public/export res to resolve
fix missing stability attributes in core, std and alloc
move code to access_levels.rs
return for some kinds instead of going through them
Export correctness, macro changes, comments
add comment for import binding
add comment for import binding
renmae to access level visitor, remove comments, move fn as closure, remove new_key
fmt
fix rebase
fix rebase
fmt
fmt
fix: move macro def to rustc_resolve
fix: reachable AccessLevel for enum variants
fmt
fix: missing stability attributes for other architectures
allow unreachable pub in rustfmt
fix: missing impl access level + renaming export to reexport
Missing impl access level was found thanks to a test in clippy
Relax priv-in-pub lint on generic bounds and where clauses of trait impls.
The priv-in-pub lint is a legacy mechanism of the compiler, supplanted by a reachability-based [type privacy](https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md) analysis. This PR does **not** relax type privacy; it only relaxes the lint (as proposed by the type privacy RFC) in the case of trait impls.
## Current Behavior
On public trait impls, it's currently an **error** to have a `where` bound constraining a private type with a trait:
```rust
pub trait Trait {}
pub struct Type {}
struct Priv {}
impl Trait for Priv {}
impl Trait for Type
where
Priv: Trait // ERROR
{}
```
...and it's a **warning** to have have a public type constrained by a private trait:
```rust
pub trait Trait {}
pub struct Type {}
pub struct Pub {}
trait Priv {}
impl Priv for Pub {}
impl Trait for Type
where
Pub: Priv // WARNING
{}
```
This lint applies to `where` clauses in other contexts, too; e.g. on free functions:
```rust
struct Priv<T>(T);
pub trait Pub {}
impl<T: Pub> Pub for Priv<T> {}
pub fn function<T>()
where
Priv<T>: Pub // WARNING
{}
```
**These constraints could be relaxed without issue.**
## New Behavior
This lint is relaxed for `where` clauses on trait impls, such that it's okay to have a `where` bound constraining a private type with a trait:
```rust
pub trait Trait {}
pub struct Type {}
struct Priv {}
impl Trait for Priv {}
impl Trait for Type
where
Priv: Trait // OK
{}
```
...and it's okay to have a public type constrained by a private trait:
```rust
pub trait Trait {}
pub struct Type {}
pub struct Pub {}
trait Priv {}
impl Priv for Pub {}
impl Trait for Type
where
Pub: Priv // OK
{}
```
## Rationale
While the priv-in-pub lint is not essential for soundness, it *can* help programmers avoid pitfalls that would make their libraries difficult to use by others. For instance, such a lint *is* useful for free functions; e.g. if a downstream crate tries to call the `function` in the previous snippet in a generic context:
```rust
fn callsite<T>()
where
Priv<T>: Pub // ERROR: omitting this bound is a compile error, but including it is too
{
function::<T>()
}
```
...it cannot do so without repeating `function`'s `where` bound, which we cannot do because `Priv` is out-of-scope. A lint for this case is arguably helpful.
However, this same reasoning **doesn't** hold for trait impls. To call an unconstrained method on a public trait impl with private bounds, you don't need to forward those private bounds, you can forward the public trait:
```rust
mod upstream {
pub trait Trait {
fn method(&self) {}
}
pub struct Type<T>(T);
pub struct Pub<T>(T);
trait Priv {}
impl<T: Priv> Priv for Pub<T> {}
impl<T> Trait for Type<T>
where
Pub<T>: Priv // WARNING
{}
}
mod downstream {
use super::upstream::*;
fn function<T>(value: Type<T>)
where
Type<T>: Trait // <- no private deets!
{
value.method();
}
}
```
**This PR only eliminates the lint on trait impls.** It leaves it intact for all other contexts, including trait definitions, inherent impls, and function definitions. It doesn't need to exist in those cases either, but I figured I'd first target a case where it's mostly pointless.
## Other Notes
- See discussion [on zulip](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/relax.20priv-in-pub.20lint.20for.20trait.20impl.20.60where.60.20bounds/near/222458397).
- This PR effectively reverts #79291.