Consider changing to & for let bindings #40402
This is a fix for #40402
For the example
```
fn main() {
let v = vec![String::from("oh no")];
let e = v[0];
}
```
It gives
```
error[E0507]: cannot move out of indexed content
--> ex1.rs:4:13
|
4 | let e = v[0];
| ^^^^ cannot move out of indexed content
|
= help: consider changing to `&v[0]`
error: aborting due to previous error
```
Another alternative is
```
error[E0507]: cannot move out of indexed content
--> ex1.rs:4:13
|
4 | let e = v[0];
| ^^^^ consider changing to `&v[0]`
error: aborting due to previous error
```
Also refer to #41564 for more details.
r? @nikomatsakis
Overall goal: reduce the amount of context a mir pass needs so that it
resembles a query.
- The hooks are no longer "threaded down" to the pass, but rather run
automatically from the top-level (we also thread down the current pass
number, so that the files are sorted better).
- The hook now receives a *single* callback, rather than a callback per-MIR.
- The traits are no longer lifetime parameters, which moved to the
methods -- given that we required
`for<'tcx>` objecs, there wasn't much point to that.
- Several passes now store a `String` instead of a `&'l str` (again, no
point).
Instead of requesting the region maps for the entire crate, request for
a given item etc. Several bits of code were modified to take
`&RegionMaps` as input (e.g., the `resolve_regions_and_report_errors()`
function). I am not totally happy with this setup -- I *think* I'd
rather have the region maps be part of typeck tables -- but at least the
`RegionMaps` works in a "parallel" way to `FreeRegionMap`, so it's not
too bad. Given that I expect a lot of this code to go away with NLL, I
didn't want to invest *too* much energy tweaking it.
remove unnecessary tasks
Remove various unnecessary tasks. All of these are "always execute" tasks that don't do any writes to tracked state (or else an assert would trigger, anyhow). In some cases, they issue lints or errors, but we''ll deal with that -- and anyway side-effects outside of a task don't cause problems for anything that I can see.
The one non-trivial refactoring here is the borrowck conversion, which adds the requirement to go from a `DefId` to a `BodyId`. I tried to make a useful helper here.
r? @eddyb
cc #40746
cc @cramertj @michaelwoerister
borrowck::mir::dataflow: ignore unwind edges of empty drops
This avoids creating drop flags in many unnecessary situations.
Fixes#41110.
r? @nagisa
beta-nominating because regression. However, that is merely a small perf regression and codegen changes are always risky, so we might let this slide for 1.17.
borrowck: consolidate `mut` suggestions
This converts all of borrowck's `mut` suggestions to a new
`mc::ImmutabilityBlame` API instead of the current mix of various hacks.
Fixes#35937.
Fixes#40823.
Fixes#40859.
cc @estebank
r? @pnkfelix
This converts all of borrowck's `mut` suggestions to a new
`mc::ImmutabilityBlame` API instead of the current mix of various hacks.
Fixes#35937.
Fixes#40823.
This commit deletes the internal liblog in favor of the implementation that
lives on crates.io. Similarly it's also setting a convention for adding crates
to the compiler. The main restriction right now is that we want compiler
implementation details to be unreachable from normal Rust code (e.g. requires a
feature), and by default everything in the sysroot is reachable via `extern
crate`.
The proposal here is to require that crates pulled in have these lines in their
`src/lib.rs`:
#![cfg_attr(rustbuild, feature(staged_api, rustc_private))]
#![cfg_attr(rustbuild, unstable(feature = "rustc_private", issue = "27812"))]
This'll mean that by default they're not using these attributes but when
compiled as part of the compiler they do a few things:
* Mark themselves as entirely unstable via the `staged_api` feature and the
`#![unstable]` attribute.
* Allow usage of other unstable crates via `feature(rustc_private)` which is
required if the crate relies on any other crates to compile (other than std).
Point to let when modifying field of immutable variable
Point at the immutable local variable when trying to modify one of its
fields.
Given a file:
```rust
struct Foo {
pub v: Vec<String>
}
fn main() {
let f = Foo { v: Vec::new() };
f.v.push("cat".to_string());
}
```
present the following output:
```
error: cannot borrow immutable field `f.v` as mutable
--> file.rs:7:13
|
6 | let f = Foo { v: Vec::new() };
| - this should be `mut`
7 | f.v.push("cat".to_string());
| ^^^
error: aborting due to previous error
```
Fix#27593.
Drop of arrays is now translated in trans::block in an ugly way that I
should clean up in a later PR, and does not handle panics in the middle
of an array drop, but this commit & PR are growing too big.
Point at the immutable local variable when trying to modify one of its
fields.
Given a file:
```rust
struct Foo {
pub v: Vec<String>
}
fn main() {
let f = Foo { v: Vec::new() };
f.v.push("cat".to_string());
}
```
present the following output:
```
error: cannot borrow immutable field `f.v` as mutable
--> file.rs:7:13
|
6 | let f = Foo { v: Vec::new() };
| - this should be `mut`
7 | f.v.push("cat".to_string());
| ^^^
error: aborting due to previous error
```
A task function is now given as a `fn` pointer to ensure that it carries
no state. Each fn can take two arguments, because that worked out to be
convenient -- these two arguments must be of some type that is
`DepGraphSafe`, a new trait that is intended to prevent "leaking"
information into the task that was derived from tracked state.
This intentionally leaves `DepGraph::in_task()`, the more common form,
alone. Eventually all uses of `DepGraph::in_task()` should be ported
to `with_task()`, but I wanted to start with a smaller subset.
Originally I wanted to use closures bound by an auto trait, but that
approach has some limitations:
- the trait cannot have a `read()` method; since the current method
is unused, that may not be a problem.
- more importantly, we would want the auto trait to be "undefined" for all types
*by default* -- that is, this use case doesn't really fit the typical
auto trait scenario. For example, imagine that there is a `u32` loaded
out of a `hir::Node` -- we don't really want to be passing that
`u32` into the task!
This reduces the number of dynamic drops in libstd from 1141 to 899.
However, without this change, the next patch would have created much
more dynamic drops.
A basic merge unswitching hack reduced the number of dynamic drops to
644, with no effect on stack usage. I should be writing a more dedicated
drop unswitching pass.
No performance measurements.
Previously it used to build a switch in a way that didn’t preserve the invariat of SwitchInt. Now
it builds it in an optimal way too, where otherwise branch becomes all the branches which did not
have partial variant drops.
This removes another special case of Switch by replacing it with the more general SwitchInt. While
this is more clunky currently, there’s no reason we can’t make it nice (and efficient) to use.
Point to immutable arg/fields when trying to use as &mut
Present the following output when trying to access an immutable borrow's
field as mutable:
```
error[E0389]: cannot borrow data mutably in a `&` reference
--> $DIR/issue-38147-1.rs:27:9
|
26 | fn f(&self) {
| ----- use `&mut self` here to make mutable
27 | f.s.push('x');
| ^^^ assignment into an immutable reference
```
And the following when trying to access an immutable struct field as mutable:
```
error: cannot borrow immutable borrowed content `*self.s` as mutable
--> $DIR/issue-38147-3.rs:17:9
|
12 | s: &'a String
| ------------- use `&'a mut String` here to make mutable
...|
16 | fn f(&self) {
| ----- use `&mut self` here to make mutable
17 | self.s.push('x');
| ^^^^^^ cannot borrow as mutable
```
Fixes#38147.
Point to immutable borrow arguments and fields when trying to use them as
mutable borrows. Add label to primary span on "cannot borrow as mutable"
errors.
Present the following output when trying to access an immutable borrow's
field as mutable:
```
error[E0389]: cannot borrow data mutably in a `&` reference
--> $DIR/issue-38147-1.rs:27:9
|
26 | fn f(&self) {
| ----- use `&mut self` here to make mutable
27 | f.s.push('x');
| ^^^ assignment into an immutable reference
```
And the following when trying to access an immutable struct field as mutable:
```
error: cannot borrow immutable borrowed content `*self.s` as mutable
--> $DIR/issue-38147-3.rs:17:9
|
12 | s: &'a String
| ------------- use `&'a mut String` here to make mutable
...|
16 | fn f(&self) {
| ----- use `&mut self` here to make mutable
17 | self.s.push('x');
| ^^^^^^ cannot borrow as mutable
```
[11/n] Separate ty::Tables into one per each body.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/38449) | [next]()) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
In order to track the results of type-checking and inference for incremental recompilation, they must be stored separately for each function or constant value, instead of lumped together.
These side-`Tables` also have to be tracked by various passes, as they visit through bodies (all of which have `Tables`, even if closures share the ones from their parent functions). This is usually done by switching a `tables` field in an override of `visit_nested_body` before recursing through `visit_body`, to the relevant one and then restoring it - however, in many cases the nesting is unnecessary and creating the visitor for each body in the crate and then visiting that body, would be a much cleaner solution.
To simplify handling of inlined HIR & its side-tables, their `NodeId` remapping and entries HIR map were fully stripped out, which means that `NodeId`s from inlined HIR must not be used where a local `NodeId` is expected. It might be possible to make the nodes (`Expr`, `Block`, `Pat`, etc.) that only show up within a `Body` have IDs that are scoped to that `Body`, which would also allow `Tables` to use `Vec`s.
That last part also fixes#38790 which was accidentally introduced in a previous refactor.
Historically this was done to accommodate bugs in lints, but there hasn't been a
bug in a lint since this feature was added which the warnings affected. Let's
completely purge warnings from all our stages by denying warnings in all stages.
This will also assist in tracking down `stage0` code to be removed whenever
we're updating the bootstrap compiler.
[10/n] Split constants and functions' arguments into disjoint bodies.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/38053) | [next]()) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
Finishes the signature-body split started in #37918, namely:
* `trait` items are separated just like `impl` items were, for uniformity, closing #37712
* `static`s, `const`s (including associated ones), `enum` discriminants and array lengths get bodies
* even the count in "repeat expressions", i.e. `n` in `[x; n]`, which fixes#24414
* arguments' patterns are moved to the bodies, with the types staying in `FnDecl`
* `&self` now desugars to `self: &Self` instead of `self: &_` (similarly for other `self` forms)
* `astconv`'s and metadata's (for rustdoc) informative uses are explicitly ignored for the purposes of the dep graph. this could be fixed in the future by hashing the exact information being extracted about the arguments as opposed to generating a dependency on *the whole body*
Refactor mir::dataflow: remove Ctxt associated type from BitDenotation trait
Refactor mir::dataflow: remove Ctxt associated type from BitDenotation trait
I no longer remember why I needed this (or thought I did). The way
that the `BitDenotation` is passed around in all existing use cases
(and planned future ones), the thing that were in the `Ctxt` can just
be part of `Self` instead.
(I think ariel had been pushing me to do this back when I first put in
this infrastructure; it took me a while to see how much of pain the
`Ctxt` was causing.)
I no longer remember why I needed this (or thought I did). The way
that the `BitDenotation` is passed around in all existing use cases
(and planned future ones), the thing that were in the `Ctxt` can just
be part of `Self` instead.
(I think ariel had been pushing me to do this back when I first put in
this infrastructure; it took me a while to see how much of pain the
`Ctxt` was causing.)
[9/n] rustc: move type information out of AdtDef and TraitDef.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/37688) | [next]()) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
Both `AdtDef` and `TraitDef` contained type information (field types, generics and predicates) which was required to create them, preventing their use before that type information exists, or in the case of field types, *mutation* was required, leading to a variance-magicking implementation of `ivar`s.
This PR takes that information out and the resulting cleaner setup could even eventually end up merged with HIR, because, just like `AssociatedItem` before it, there's no dependency on types anymore.
(With one exception, variant discriminants should probably be moved into their own map later.)
rustdoc: link to cross-crate sources directly.
Fixes#37684 by implementing proper support for getting the `Span` of definitions across crates.
In rustdoc this is used to generate direct links to the original source instead of fragile redirects.
This functionality could be expanded further for making error reporting code more uniform and seamless across crates, although at the moment there is no actual source to print, only file/line/column information.
Closes#37870 which is also "fixes" #37684 by throwing away the builtin macro docs from libcore.
After this lands, #37727 could be reverted, although it doesn't matter much either way.
Refactor TraitObject to Slice<ExistentialPredicate>
For reference, the primary types changes in this PR are shown below. They may add in the understanding of what is discussed below, though they should not be required.
We change `TraitObject` into a list of `ExistentialPredicate`s to allow for a couple of things:
- Principal (ExistentialPredicate::Trait) is now optional.
- Region bounds are moved out of `TraitObject` into `TyDynamic`. This permits wrapping only the `ExistentialPredicate` list in `Binder`.
- `BuiltinBounds` and `BuiltinBound` are removed entirely from the codebase, to permit future non-constrained auto traits. These are replaced with `ExistentialPredicate::AutoTrait`, which only requires a `DefId`. For the time being, only `Send` and `Sync` are supported; this constraint can be lifted in a future pull request.
- Binder-related logic is extracted from `ExistentialPredicate` into the parent (`Binder<Slice<EP>>`), so `PolyX`s are inside `TraitObject` are replaced with `X`.
The code requires a sorting order for `ExistentialPredicate`s in the interned `Slice`. The sort order is asserted to be correct during interning, but the slices are not sorted at that point.
1. `ExistentialPredicate::Trait` are defined as always equal; **This may be wrong; should we be comparing them and sorting them in some way?**
1. `ExistentialPredicate::Projection`: Compared by `ExistentialProjection::sort_key`.
1. `ExistentialPredicate::AutoTrait`: Compared by `TraitDef.def_path_hash`.
Construction of `ExistentialPredicate`s is conducted through `TyCtxt::mk_existential_predicates`, which interns a passed iterator as a `Slice`. There are no convenience functions to construct from a set of separate iterators; callers must pass an iterator chain. The lack of convenience functions is primarily due to few uses and the relative difficulty in defining a nice API due to optional parts and difficulty in recognizing which argument goes where. It is also true that the current situation isn't significantly better than 4 arguments to a constructor function; but the extra work is deemed unnecessary as of this time.
```rust
// before this PR
struct TraitObject<'tcx> {
pub principal: PolyExistentialTraitRef<'tcx>,
pub region_bound: &'tcx ty::Region,
pub builtin_bounds: BuiltinBounds,
pub projection_bounds: Vec<PolyExistentialProjection<'tcx>>,
}
// after
pub enum ExistentialPredicate<'tcx> {
// e.g. Iterator
Trait(ExistentialTraitRef<'tcx>),
// e.g. Iterator::Item = T
Projection(ExistentialProjection<'tcx>),
// e.g. Send
AutoTrait(DefId),
}
```
Fix syntax error in the compiler
Currently `rustc` accepts the following code: `fn f<'a>() where 'a {}`. This should be a syntax error, shouldn't it?
Not sure if my changes actually compile, waiting for the LLVM to build.
Translate closures through the collector
Now that old trans is gone, there is no need for the hack of translating closures when they are instantiated. We can translate them like regular items.
r? @eddyb
Replace FNV with a faster hash function.
Hash table lookups are very hot in rustc profiles and the time taken within `FnvHash` itself is a big part of that. Although FNV is a simple hash, it processes its input one byte at a time. In contrast, Firefox has a homespun hash function that is also simple but works on multiple bytes at a time. So I tried it out and the results are compelling:
```
futures-rs-test 4.326s vs 4.212s --> 1.027x faster (variance: 1.001x, 1.007x)
helloworld 0.233s vs 0.232s --> 1.004x faster (variance: 1.037x, 1.016x)
html5ever-2016- 5.397s vs 5.210s --> 1.036x faster (variance: 1.009x, 1.006x)
hyper.0.5.0 5.018s vs 4.905s --> 1.023x faster (variance: 1.007x, 1.006x)
inflate-0.1.0 4.889s vs 4.872s --> 1.004x faster (variance: 1.012x, 1.007x)
issue-32062-equ 0.347s vs 0.335s --> 1.035x faster (variance: 1.033x, 1.019x)
issue-32278-big 1.717s vs 1.622s --> 1.059x faster (variance: 1.027x, 1.028x)
jld-day15-parse 1.537s vs 1.459s --> 1.054x faster (variance: 1.005x, 1.003x)
piston-image-0. 11.863s vs 11.482s --> 1.033x faster (variance: 1.060x, 1.002x)
regex.0.1.30 2.517s vs 2.453s --> 1.026x faster (variance: 1.011x, 1.013x)
rust-encoding-0 2.080s vs 2.047s --> 1.016x faster (variance: 1.005x, 1.005x)
syntex-0.42.2 32.268s vs 31.275s --> 1.032x faster (variance: 1.014x, 1.022x)
syntex-0.42.2-i 17.629s vs 16.559s --> 1.065x faster (variance: 1.013x, 1.021x)
```
(That's a stage1 compiler doing debug builds. Results for a stage2 compiler are similar.)
The attached commit is not in a state suitable for landing because I changed the implementation of FnvHasher without changing its name (because that would have required touching many lines in the compiler). Nonetheless, it is a good place to start discussions.
Profiles show very clearly that this new hash function is a lot faster to compute than FNV. The quality of the new hash function is less clear -- it seems to do better in some cases and worse in others (judging by the number of instructions executed in `Hash{Map,Set}::get`).
CC @brson, @arthurprs
Stabilize `..` in tuple (struct) patterns
I'd like to nominate `..` in tuple and tuple struct patterns for stabilization.
This feature is a relatively small extension to existing stable functionality and doesn't have known blockers.
The feature first appeared in Rust 1.10 6 months ago.
An example of use: https://github.com/rust-lang/rust/pull/36203
Closes https://github.com/rust-lang/rust/issues/33627
r? @nikomatsakis
[5/n] rustc: record the target type of every adjustment.
_This is part of a series ([prev](https://github.com/rust-lang/rust/pull/37404) | [next](https://github.com/rust-lang/rust/pull/37412)) of patches designed to rework rustc into an out-of-order on-demand pipeline model for both better feature support (e.g. [MIR-based](https://github.com/solson/miri) early constant evaluation) and incremental execution of compiler passes (e.g. type-checking), with beneficial consequences to IDE support as well.
If any motivation is unclear, please ask for additional PR description clarifications or code comments._
<hr>
The first commit rearranges `tcx.tables` so that all users go through `tcx.tables()`. This in preparation for per-body `Tables` where they will be requested for a specific `DefId`. Included to minimize churn.
The rest of the changes focus on adjustments, there are some renamings, but the main addition is the target type, always available in all cases (as opposed to just for unsizing where it was previously needed).
Possibly the most significant effect of this change is that figuring out the final type of an expression is now _always_ just one successful `HashMap` lookup (either the adjustment or, if that doesn't exist, the node type).
Most of the Rust community agrees that the vec! macro is clearer when
called using square brackets [] instead of regular brackets (). Most of
these ocurrences are from before macros allowed using different types of
brackets.
There is one left unchanged in a pretty-print test, as the pretty
printer still wants it to have regular brackets.
Add ArrayVec and AccumulateVec to reduce heap allocations during interning of slices
Updates `mk_tup`, `mk_type_list`, and `mk_substs` to allow interning directly from iterators. The previous PR, #37220, changed some of the calls to pass a borrowed slice from `Vec` instead of directly passing the iterator, and these changes further optimize that to avoid the allocation entirely.
This change yields 50% less malloc calls in [some cases](https://pastebin.mozilla.org/8921686). It also yields decent, though not amazing, performance improvements:
```
futures-rs-test 4.091s vs 4.021s --> 1.017x faster (variance: 1.004x, 1.004x)
helloworld 0.219s vs 0.220s --> 0.993x faster (variance: 1.010x, 1.018x)
html5ever-2016- 3.805s vs 3.736s --> 1.018x faster (variance: 1.003x, 1.009x)
hyper.0.5.0 4.609s vs 4.571s --> 1.008x faster (variance: 1.015x, 1.017x)
inflate-0.1.0 3.864s vs 3.883s --> 0.995x faster (variance: 1.232x, 1.005x)
issue-32062-equ 0.309s vs 0.299s --> 1.033x faster (variance: 1.014x, 1.003x)
issue-32278-big 1.614s vs 1.594s --> 1.013x faster (variance: 1.007x, 1.004x)
jld-day15-parse 1.390s vs 1.326s --> 1.049x faster (variance: 1.006x, 1.009x)
piston-image-0. 10.930s vs 10.675s --> 1.024x faster (variance: 1.006x, 1.010x)
reddit-stress 2.302s vs 2.261s --> 1.019x faster (variance: 1.010x, 1.026x)
regex.0.1.30 2.250s vs 2.240s --> 1.005x faster (variance: 1.087x, 1.011x)
rust-encoding-0 1.895s vs 1.887s --> 1.005x faster (variance: 1.005x, 1.018x)
syntex-0.42.2 29.045s vs 28.663s --> 1.013x faster (variance: 1.004x, 1.006x)
syntex-0.42.2-i 13.925s vs 13.868s --> 1.004x faster (variance: 1.022x, 1.007x)
```
We implement a small-size optimized vector, intended to be used primarily for collection of presumed to be short iterators. This vector cannot be "upsized/reallocated" into a heap-allocated vector, since that would require (slow) branching logic, but during the initial collection from an iterator heap-allocation is possible.
We make the new `AccumulateVec` and `ArrayVec` generic over implementors of the `Array` trait, of which there is currently one, `[T; 8]`. In the future, this is likely to expand to other values of N.
Huge thanks to @nnethercote for collecting the performance and other statistics mentioned above.
In #34268 (8531d581), we replaced matches of None to the unit value `()`
with `if let`s in places where it was deemed that this made the code
unambiguously clearer and more idiomatic. In #34638 (d37edef9), we did
the same for matches of None to the empty block `{}`.
A casual observer, upon seeing these commits fly by, might suppose that
the matter was then settled, that no further pull requests on this
utterly trivial point of style could or would be made. Unless ...
It turns out that sometimes people write the empty block with a space in
between the braces. Who knew?
The wording of RFC #495 enables moves out of slices. Unfortuantely, non-zeroing
moves out of slices introduce a very annoying complication: as slices can
vary in their length, indexes from the start and end may or may not overlap
depending on the slice's exact length, which prevents assigning a particular
drop flag for each individual element.
For example, in the code
```Rust
fn foo<T>(a: Box<[Box<[T]>]>, c: bool) -> T {
match (a, c) {
(box [box [t, ..], ..], true) => t,
(box [.., box [.., t]], false) => t,
_ => panic!()
}
}
```
If the condition is false, we have to drop the first element
of `a`, unless `a` has size 1 in which case we drop all the elements
of it but the last.
If someone comes with a nice way of handling it, we can always re-allow
moves out of slices.
This is a [breaking-change], but it is behind the `slice_patterns` feature
gate and was not allowed until recently.