Make `body_owned_by` return the `Body` instead of just the `BodyId`
fixes#125677
Almost all `body_owned_by` callers immediately called `body`, too, so just return `Body` directly.
This makes the inline-const query feeding more robust, as all calls to `body_owned_by` will now yield a body for inline consts, too.
I have not yet figured out a good way to make `tcx.hir().body()` return an inline-const body, but that can be done as a follow-up
Uplift `EarlyBinder` into `rustc_type_ir`
We also need to give `EarlyBinder` a `'tcx` param, so that we can carry the `Interner` in the `EarlyBinder` too. This is necessary because otherwise we have an unconstrained `I: Interner` parameter in many of the `EarlyBinder`'s inherent impls.
I also generally think that this is desirable to have, in case we later want to track some state in the `EarlyBinder`.
r? lcnr
Rename Unsafe to Safety
Alternative to #124455, which is to just have one Safety enum to use everywhere, this opens the posibility of adding `ast::Safety::Safe` that's useful for unsafe extern blocks.
This leaves us today with:
```rust
enum ast::Safety {
Unsafe(Span),
Default,
// Safe (going to be added for unsafe extern blocks)
}
enum hir::Safety {
Unsafe,
Safe,
}
```
We would convert from `ast::Safety::Default` into the right Safety level according the context.
Split out `ty::AliasTerm` from `ty::AliasTy`
Splitting out `AliasTerm` (for use in project and normalizes goals) and `AliasTy` (for use in `ty::Alias`)
r? lcnr
Refactor float `Primitive`s to a separate `Float` type
Now there are 4 of them, it makes sense to refactor `F16`, `F32`, `F64` and `F128` out of `Primitive` and into a separate `Float` type (like integers already are). This allows patterns like `F16 | F32 | F64 | F128` to be simplified into `Float(_)`, and is consistent with `ty::FloatTy`.
As a side effect, this PR also makes the `Ty::primitive_size` method work with `f16` and `f128`.
Tracking issue: #116909
`@rustbot` label +F-f16_and_f128
Add simple async drop glue generation
This is a prototype of the async drop glue generation for some simple types. Async drop glue is intended to behave very similar to the regular drop glue except for being asynchronous. Currently it does not execute synchronous drops but only calls user implementations of `AsyncDrop::async_drop` associative function and awaits the returned future. It is not complete as it only recurses into arrays, slices, tuples, and structs and does not have same sensible restrictions as the old `Drop` trait implementation like having the same bounds as the type definition, while code assumes their existence (requires a future work).
This current design uses a workaround as it does not create any custom async destructor state machine types for ADTs, but instead uses types defined in the std library called future combinators (deferred_async_drop, chain, ready_unit).
Also I recommend reading my [explainer](https://zetanumbers.github.io/book/async-drop-design.html).
This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727) work.
Feature completeness:
- [x] `AsyncDrop` trait
- [ ] `async_drop_in_place_raw`/async drop glue generation support for
- [x] Trivially destructible types (integers, bools, floats, string slices, pointers, references, etc.)
- [x] Arrays and slices (array pointer is unsized into slice pointer)
- [x] ADTs (enums, structs, unions)
- [x] tuple-like types (tuples, closures)
- [ ] Dynamic types (`dyn Trait`, see explainer's [proposed design](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#async-drop-glue-for-dyn-trait))
- [ ] coroutines (https://github.com/rust-lang/rust/pull/123948)
- [x] Async drop glue includes sync drop glue code
- [x] Cleanup branch generation for `async_drop_in_place_raw`
- [ ] Union rejects non-trivially async destructible fields
- [ ] `AsyncDrop` implementation requires same bounds as type definition
- [ ] Skip trivially destructible fields (optimization)
- [ ] New [`TyKind::AdtAsyncDestructor`](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#adt-async-destructor-types) and get rid of combinators
- [ ] [Synchronously undroppable types](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#exclusively-async-drop)
- [ ] Automatic async drop at the end of the scope in async context
Introduce perma-unstable `wasm-c-abi` flag
Now that `wasm-bindgen` v0.2.88 supports the spec-compliant C ABI, the idea is to switch to that in a future version of Rust. In the meantime it would be good to let people test and play around with it.
This PR introduces a new perma-unstable `-Zwasm-c-abi` compiler flag, which switches to the new spec-compliant C ABI when targeting `wasm32-unknown-unknown`.
Alternatively, we could also stabilize this and then deprecate it when we switch. I will leave this to the Rust maintainers to decide.
This is a companion PR to #117918, but they could be merged independently.
MCP: https://github.com/rust-lang/compiler-team/issues/703
Tracking issue: https://github.com/rust-lang/rust/issues/122532
Trait predicates for types which have errors may still
evaluate to OK leading to downstream ICEs. Now we return
a selection error for such types in candidate assembly and
thereby prevent such issues
Cleanup: Rename `HAS_PROJECTIONS` to `HAS_ALIASES` etc.
The name of the bitflag `HAS_PROJECTIONS` and of its corresponding method `has_projections` is quite historical dating back to a time when projections were the only kind of alias type.
I think it's time to update it to clear up any potential confusion for newcomers and to reduce unnecessary friction during contributor onboarding.
r? types
Only inspect user-written predicates for privacy concerns
fixes#123288
Previously we looked at the elaborated predicates, which, due to adding various bounds on fields, end up requiring trivially true bounds. But these bounds can contain private types, which the privacy visitor then found and errored about.
Assert that args are actually compatible with their generics, rather than just their count
Right now we just check that the number of args is right, rather than actually checking the kinds. Uplift a helper fn that I wrote from trait selection to do just that. Found a couple bugs along the way.
r? `@lcnr` or `@fmease` (or anyone really lol)
Add `Ord::cmp` for primitives as a `BinOp` in MIR
Update: most of this OP was written months ago. See https://github.com/rust-lang/rust/pull/118310#issuecomment-2016940014 below for where we got to recently that made it ready for review.
---
There are dozens of reasonable ways to implement `Ord::cmp` for integers using comparison, bit-ops, and branches. Those differences are irrelevant at the rust level, however, so we can make things better by adding `BinOp::Cmp` at the MIR level:
1. Exactly how to implement it is left up to the backends, so LLVM can use whatever pattern its optimizer best recognizes and cranelift can use whichever pattern codegens the fastest.
2. By not inlining those details for every use of `cmp`, we drastically reduce the amount of MIR generated for `derive`d `PartialOrd`, while also making it more amenable to MIR-level optimizations.
Having extremely careful `if` ordering to μoptimize resource usage on broadwell (#63767) is great, but it really feels to me like libcore is the wrong place to put that logic. Similarly, using subtraction [tricks](https://graphics.stanford.edu/~seander/bithacks.html#CopyIntegerSign) (#105840) is arguably even nicer, but depends on the optimizer understanding it (https://github.com/llvm/llvm-project/issues/73417) to be practical. Or maybe [bitor is better than add](https://discourse.llvm.org/t/representing-in-ir/67369/2?u=scottmcm)? But maybe only on a future version that [has `or disjoint` support](https://discourse.llvm.org/t/rfc-add-or-disjoint-flag/75036?u=scottmcm)? And just because one of those forms happens to be good for LLVM, there's no guarantee that it'd be the same form that GCC or Cranelift would rather see -- especially given their very different optimizers. Not to mention that if LLVM gets a spaceship intrinsic -- [which it should](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Suboptimal.20inlining.20in.20std.20function.20.60binary_search.60/near/404250586) -- we'll need at least a rustc intrinsic to be able to call it.
As for simplifying it in Rust, we now regularly inline `{integer}::partial_cmp`, but it's quite a large amount of IR. The best way to see that is with 8811efa88b (diff-d134c32d028fbe2bf835fef2df9aca9d13332dd82284ff21ee7ebf717bfa4765R113) -- I added a new pre-codegen MIR test for a simple 3-tuple struct, and this PR change it from 36 locals and 26 basic blocks down to 24 locals and 8 basic blocks. Even better, as soon as the construct-`Some`-then-match-it-in-same-BB noise is cleaned up, this'll expose the `Cmp == 0` branches clearly in MIR, so that an InstCombine (#105808) can simplify that to just a `BinOp::Eq` and thus fix some of our generated code perf issues. (Tracking that through today's `if a < b { Less } else if a == b { Equal } else { Greater }` would be *much* harder.)
---
r? `@ghost`
But first I should check that perf is ok with this
~~...and my true nemesis, tidy.~~
Make `TyCtxt::coroutine_layout` take coroutine's kind parameter
For coroutines that come from coroutine-closures (i.e. async closures), we may have two kinds of bodies stored in the coroutine; one that takes the closure's captures by reference, and one that takes the captures by move.
These currently have identical layouts, but if we do any optimization for these layouts that are related to the upvars, then they will diverge -- e.g. https://github.com/rust-lang/rust/pull/120168#discussion_r1536943728.
This PR relaxes the assertion I added in #121122, and instead make the `TyCtxt::coroutine_layout` method take the `coroutine_kind_ty` argument from the coroutine, which will allow us to differentiate these by-move and by-ref bodies.
This should assist comprehending the size of coroutines.
In particular, whenever a future is suspended while awaiting another
future, the latter is given the special name `__awaitee`, and now the
type of the awaited future will be printed, allowing identifying
caller/callee — er, I mean, poller/pollee — relationships.
It would be possible to include the type name in more cases, but I
thought that that might be overly verbose (`print-type-sizes` is already
a lot of text) and ordinary named fields or variables are easier for
readers to discover the types of.
clean up `Sized` checking
This PR cleans up `sized_constraint` and related functions to make them simpler and faster. This should not make more or less code compile, but it can change error output in some rare cases.
## enums and unions are `Sized`, even if they are not WF
The previous code has some special handling for enums, which made them sized if and only if the last field of each variant is sized. For example given this definition (which is not WF)
```rust
enum E<T1: ?Sized, T2: ?Sized, U1: ?Sized, U2: ?Sized> {
A(T1, T2),
B(U1, U2),
}
```
the enum was sized if and only if `T2` and `U2` are sized, while `T1` and `T2` were ignored for `Sized` checking. After this PR this enum will always be sized.
Unsized enums are not a thing in Rust and removing this special case allows us to return an `Option<Ty>` from `sized_constraint`, rather than a `List<Ty>`.
Similarly, the old code made an union defined like this
```rust
union Union<T: ?Sized, U: ?Sized> {
head: T,
tail: U,
}
```
sized if and only if `U` is sized, completely ignoring `T`. This just makes no sense at all and now this union is always sized.
## apply the "perf hack" to all (non-error) types, instead of just type parameters
This "perf hack" skips evaluating `sized_constraint(adt): Sized` if `sized_constraint(adt): Sized` exactly matches a predicate defined on `adt`, for example:
```rust
// `Foo<T>: Sized` iff `T: Sized`, but we know `T: Sized` from a predicate of `Foo`
struct Foo<T /*: Sized */>(T);
```
Previously this was only applied to type parameters and now it is applied to every type. This means that for example this type is now always sized:
```rust
// Note that this definition is WF, but the type `S<T>` not WF in the global/empty ParamEnv
struct S<T>([T]) where [T]: Sized;
```
I don't anticipate this to affect compile time of any real-world program, but it makes the code a bit nicer and it also makes error messages a bit more consistent if someone does write such a cursed type.
## tuples are sized if the last type is sized
The old solver already has this behavior and this PR also implements it for the new solver and `is_trivially_sized`. This makes it so that tuples work more like a struct defined like this:
```rust
struct TupleN<T1, T2, /* ... */ Tn: ?Sized>(T1, T2, /* ... */ Tn);
```
This might improve the compile time of programs with large tuples a little, but is mostly also a consistency fix.
## `is_trivially_sized` for more types
This function is used post-typeck code (borrowck, const eval, codegen) to skip evaluating `T: Sized` in some cases. It will now return `true` in more cases, most notably `UnsafeCell<T>` and `ManuallyDrop<T>` where `T.is_trivially_sized`.
I'm anticipating that this change will improve compile time for some real world programs.
hir: Remove `opt_local_def_id_to_hir_id` and `opt_hir_node_by_def_id`
Also replace a few `hir_node()` calls with `hir_node_by_def_id()`.
Follow up to https://github.com/rust-lang/rust/pull/120943.
Remove `Ord` from `ClosureKind`
Using `Ord` to accomplish a meaning of subset relationship can be hard to read. The existing uses for that are easily replaced with a `match`, and in my opinion, more readable without needing to resorting to comments to explain the intention.
cc `@compiler-errors`
Using `Ord` to accomplish a meaning of subset relationship
can be hard to read. The existing uses for that are easily
replaced with a `match`, and in my opinion, more readable
without needing to resorting to comments to explain the
intention.
Uplift some feeding out of `associated_type_for_impl_trait_in_impl` and into queries
This PR moves the `type_of` and `generics_of` query feeding out of `associated_type_for_impl_trait_in_impl`, since eagerly feeding results in query cycles due to a subtle interaction with `resolve_bound_vars`.
Fixes#122019
r? spastorino
stricter hidden type wf-check [based on #115008]
Original work by `@aliemjay` in #115008. A huge thanks to them for originally figuring out this approach ❤️
Fixes https://github.com/rust-lang/rust/issues/114728
Fixes https://github.com/rust-lang/rust/issues/114572
Instead of adding the `WellFormed` obligations when relating opaque types, we now always emit such an obligation when defining the hidden type.
This causes nested opaque types which aren't wf to error, see the comment below for the described impact. I believe this change to be desirable as it significantly reduces complexity by removing special-cases.
It also caused an issue with RPITIT: in defaulted trait methods, we add a `Projection(synthetic_assoc, rpit_of_trait_method)` clause to the `param_env`. This clause is not added to the `ParamEnv` of the nested coroutines. This caused a normalization failure in `fn check_coroutine_obligations` with the new solver. I fixed that by using the env of the typeck root instead.
r? `@oli-obk`
Rollup of 9 pull requests
Successful merges:
- #121065 (Add basic i18n guidance for `Display`)
- #121744 (Stop using Bubble in coherence and instead emulate it with an intercrate check)
- #121829 (Dummy tweaks (attempt 2))
- #121857 (Implement async closure signature deduction)
- #121894 (const_eval_select: make it safe but be careful with what we expose on stable for now)
- #122014 (Change some attributes to only_local.)
- #122016 (will_wake tests fail on Miri and that is expected)
- #122018 (only set noalias on Box with the global allocator)
- #122028 (Remove some dead code)
r? `@ghost`
`@rustbot` modify labels: rollup
Rollup of 8 pull requests
Successful merges:
- #121202 (Limit the number of names and values in check-cfg diagnostics)
- #121301 (errors: share `SilentEmitter` between rustc and rustfmt)
- #121658 (Hint user to update nightly on ICEs produced from outdated nightly)
- #121846 (only compare ambiguity item that have hard error)
- #121961 (add test for #78894#71450)
- #121975 (hir_analysis: enums return `None` in `find_field`)
- #121978 (Fix duplicated path in the "not found dylib" error)
- #121991 (Merge impl_trait_in_assoc_types_defined_by query back into `opaque_types_defined_by`)
r? `@ghost`
`@rustbot` modify labels: rollup
only set noalias on Box with the global allocator
As discovered in https://github.com/rust-lang/miri/issues/3341, `noalias` and custom allocators don't go well together.
rustc can now check whether a Box uses the global allocator. This replaces the previous ad-hoc and rather unprincipled check for a zero-sized allocator.
This is the rustc part of fixing that; Miri will also need a patch.
Instead, when we're collecting opaques for associated items, we choose the right collection mode depending on whether we're collecting for an associated item of a trait impl or not.
Use the correct logic for nested impl trait in assoc types
Previously we accidentally continued with the TAIT visitor, which allowed more than we wanted to.
r? ```@compiler-errors```
Convert `delayed_bug`s to `bug`s.
I have a suspicion that quite a few delayed bug paths are impossible to reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite, then converted back every `bug` that was hit. A surprising number were never hit.
This is too dangerous to merge. Increased coverage (fuzzing or a crater run) would likely hit more cases. But it might be useful for people to look at and think about which paths are genuinely unreachable.
r? `@ghost`
I have a suspicion that quite a few delayed bug paths are impossible to
reach, so I did an experiment.
I converted every `delayed_bug` to a `bug`, ran the full test suite,
then converted back every `bug` that was hit. A surprising number were
never hit.
The next commit will convert some more back, based on human judgment.
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
Merge `impl_polarity` and `impl_trait_ref` queries
Hopefully this is perf neutral. I want to finish https://github.com/rust-lang/rust/pull/120835 and stop using the HIR in `coherent_trait`, which should then give us a perf improvement.
Dejargonize `subst`
In favor of #110793, replace almost every occurence of `subst` and `substitution` from rustc codes, but they still remains in subtrees under `src/tools/` like clippy and test codes (I'd like to replace them after this)
Assert that params with the same *index* have the same *name*
Found this bug when trying to build libcore with the new solver, since it will canonicalize two params with the same index into *different* placeholders if those params differ by name.
Harmonize `AsyncFn` implementations, make async closures conditionally impl `Fn*` traits
This PR implements several changes to the built-in and libcore-provided implementations of `Fn*` and `AsyncFn*` to address two problems:
1. async closures do not implement the `Fn*` family traits, leading to breakage: https://crater-reports.s3.amazonaws.com/pr-120361/index.html
2. *references* to async closures do not implement `AsyncFn*`, as a consequence of the existing blanket impls of the shape `AsyncFn for F where F: Fn, F::Output: Future`.
In order to fix (1.), we implement `Fn` traits appropriately for async closures. It turns out that async closures can:
* always implement `FnOnce`, meaning that they're drop-in compatible with `FnOnce`-bound combinators like `Option::map`.
* conditionally implement `Fn`/`FnMut` if they have no captures, which means that existing usages of async closures should *probably* work without breakage (crater checking this: https://github.com/rust-lang/rust/pull/120712#issuecomment-1930587805).
In order to fix (2.), we make all of the built-in callables implement `AsyncFn*` via built-in impls, and instead adjust the blanket impls for `AsyncFn*` provided by libcore to match the blanket impls for `Fn*`.
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
Remove unused/unnecessary features
~~The bulk of the actual code changes here is replacing try blocks with equivalent closures. I'm not entirely sure that's a good idea since it may have perf impact, happy to revert if that's the case/the change is unwanted.~~
I also removed a lot of `recursion_limit = "256"` since everything seems to build fine without that and most don't have any comment justifying it.
remove StructuralEq trait
The documentation given for the trait is outdated: *all* function pointers implement `PartialEq` and `Eq` these days. So the `StructuralEq` trait doesn't really seem to have any reason to exist any more.
One side-effect of this PR is that we allow matching on some consts that do not implement `Eq`. However, we already allowed matching on floats and consts containing floats, so this is not new, it is just allowed in more cases now. IMO it makes no sense at all to allow float matching but also sometimes require an `Eq` instance. If we want to require `Eq` we should adjust https://github.com/rust-lang/rust/pull/115893 to check for `Eq`, and rule out float matching for good.
Fixes https://github.com/rust-lang/rust/issues/115881
Do not normalize closure signature when building `FnOnce` shim
It is not necessary to normalize the closure signature when building an `FnOnce` shim for an `Fn`/`FnMut` closure. That closure shim is just calling `FnMut::call_mut(&mut self)` anyways.
It's also somewhat sketchy that we were ever doing this to begin with, since we're normalizing with a `ParamEnv::reveal_all()` param-env, which is definitely not right with possibly polymorphic substs.
This cuts out a tiny bit of unnecessary work in `Instance::resolve` and simplifies the signature because now we can unconditionally return an `Instance`.
Simplify `closure_env_ty` and `closure_env_param`
Random cleanup that I found when working on async closures. This makes it easier to separate the latter into a new tykind.
Use `zip_eq` to enforce that things being zipped have equal sizes
Some `zip`s are best enforced to be equal, since size mismatches suggest deeper bugs in the compiler.
Varargs support for system ABI
This PR allows functions with the `system` ABI to be variadic (under the `extended_varargs_abi_support` feature tracked in #100189). On x86 windows, the `system` ABI is equivalent to `C` for variadic functions. On other platforms, `system` is already equivalent to `C`.
Fixes#110505
We have `span_delayed_bug` and often pass it a `DUMMY_SP`. This commit
adds `delayed_bug`, which matches pairs like `err`/`span_err` and
`warn`/`span_warn`.
Clean up some lifetimes in `rustc_pattern_analysis`
This PR removes some redundant lifetimes. I figured out that we were shortening the lifetime of an arena-allocated `&'p DeconstructedPat<'p>` to `'a DeconstructedPat<'p>`, which forced us to carry both lifetimes when we could otherwise carry just one.
This PR also removes and elides some unnecessary lifetimes.
I also cherry-picked 0292eb9bb9b897f5c0926c6a8530877f67e7cc9b, and then simplified more lifetimes in `MatchVisitor`, which should make #119233 a very simple PR!
r? Nadrieril
Make closures carry their own ClosureKind
Right now, we use the "`movability`" field of `hir::Closure` to distinguish a closure and a coroutine. This is paired together with the `CoroutineKind`, which is located not in the `hir::Closure`, but the `hir::Body`. This is strange and redundant.
This PR introduces `ClosureKind` with two variants -- `Closure` and `Coroutine`, which is put into `hir::Closure`. The `CoroutineKind` is thus removed from `hir::Body`, and `Option<Movability>` no longer needs to be a stand-in for "is this a closure or a coroutine".
r? eholk
Coroutine variant fields can be uninitialized
Wrap coroutine variant fields in MaybeUninit to indicate that they might be uninitialized. Otherwise an uninhabited field will make the entire variant uninhabited and introduce undefined behaviour.
The analogous issue in the prefix of coroutine layout was addressed by 6fae7f8071.
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`