Use panic() instead of panic!() in some places in core.
See https://github.com/rust-lang/rust/pull/92068 and https://github.com/rust-lang/rust/pull/92140.
This avoids the `panic!()` macro in a few potentially hot paths. This becomes more relevant when switching `core` to Rust 2021, as it'll avoid format_args!() and save some compilation time. (It doesn't make a huge difference, but still.) (Also the errors in const panic become slightly nicer.)
Allow reverse iteration of lowercase'd/uppercase'd chars
The PR implements `DoubleEndedIterator` trait for `ToLowercase` and `ToUppercase`.
This enables reverse iteration of lowercase/uppercase variants of character sequences.
One of use cases: determining whether a char sequence is a suffix of another one.
Example:
```rust
fn endswith_ignore_case(s1: &str, s2: &str) -> bool {
for eob in s1
.chars()
.flat_map(|c| c.to_lowercase())
.rev()
.zip_longest(s2.chars().flat_map(|c| c.to_lowercase()).rev())
{
match eob {
EitherOrBoth::Both(c1, c2) => {
if c1 != c2 {
return false;
}
}
EitherOrBoth::Left(_) => return true,
EitherOrBoth::Right(_) => return false,
}
}
true
}
```
Revert "Temporarily rename int_roundings functions to avoid conflicts"
This reverts commit 3ece63b64e.
This should be okay because #90329 has been merged.
r? `@joshtriplett`
The src pointers in CopyOnDrop and InsertionHole used to be *mut T, and
were derived via automatic conversion from &mut T. According to Stacked
Borrows 2.1, this means that those pointers become invalidated by
interior mutation in the comparison function.
But there's no need for mutability in this code path. Thus, we can
change the drop guards to use *const and derive those from &T.
Add a space and 2 grave accents
I only noticed this because I have this implementation copy pasted in some places in my code and I really can't wait for this to be stabilized...
Mark defaulted `PartialEq`/`PartialOrd` methods as const
WIthout it, `const` impls of these traits are unpleasant to write. I think this kind of change is allowed now. although it looks like it might require some Miri tweaks. Let's find out.
r? ```@fee1-dead```
Do array-slice equality via array equality, rather than always via slices
~~Draft because it needs a rebase after #91766 eventually gets through bors.~~
This enables the optimizations from #85828 to be used for array-to-slice comparisons too, not just array-to-array.
For example, <https://play.rust-lang.org/?version=nightly&mode=release&edition=2021&gist=5f9ba69b3d5825a782f897c830d3a6aa>
```rust
pub fn demo(x: &[u8], y: [u8; 4]) -> bool {
*x == y
}
```
Currently writes the array to stack for no reason:
```nasm
sub rsp, 4
mov dword ptr [rsp], edx
cmp rsi, 4
jne .LBB0_1
mov eax, dword ptr [rdi]
cmp eax, dword ptr [rsp]
sete al
add rsp, 4
ret
.LBB0_1:
xor eax, eax
add rsp, 4
ret
```
Whereas with the change in this PR it just compares it directly:
```nasm
cmp rsi, 4
jne .LBB1_1
cmp dword ptr [rdi], edx
sete al
ret
.LBB1_1:
xor eax, eax
ret
```
Most of these problems originate in use of get_unchecked_mut.
When calling ptr::copy_nonoverlapping, using get_unchecked_mut for both
arguments causes the borrow created to make the second pointer to invalid the
first.
The pairs of identical MaybeUninit::slice_as_mut_ptr calls similarly
invalidate each other.
There was also a similar borrow invalidation problem with the use of
slice::get_unchecked_mut to derive the pointer for the CopyOnDrop.
Constify `bool::then{,_some}`
Note on `~const Drop`: it has no effect when called from runtime functions, when called from const contexts, the trait system ensures that the type can be dropped in const contexts.
Add `[T]::as_simd(_mut)`
SIMD-style optimizations are the most common use for `[T]::align_to(_mut)`, but that's `unsafe`. So these are *safe* wrappers around it, now that we have the `Simd` type available, to make it easier to use.
```rust
impl [T] {
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T]);
pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T]);
}
```
They're `cfg`'d out for miri because the `simd` module as a whole is unavailable there.
Readd track_caller to Result::from_residual
This is a followup on https://github.com/rust-lang/rust/issues/87401 in and an attempt to move the issue towards resolution.
As part of the overhaul of the Try trait we removed the ability for errors to grab location information during propagation via `?` with the builtin `std::result::Result`. The previously linked issue has a fair bit of discussion into the reasons for and against the usage of `#[track_caller]` on the `FromResidual` impl on `Result` that I will do my best to summarize.
---
### For
- https://github.com/rust-lang/rust/issues/87401#issuecomment-915053533: Difficulties with using non `std::result::Result` like types
- https://github.com/rust-lang/rust/issues/87401#issuecomment-978355102: Inconsistency with functionality provided for recoverable (Result) and non-recoverable errors (panic), where panic provides a location and Result does not, pushing some users towards using panic
### Against
- https://github.com/rust-lang/rust/issues/84277#issuecomment-885322833: concern that this will bloat callers that never use this data
---
Personally, I want to quantify the performance / bloat impact of re-adding this attribute, and fully evaluate the pros and cons before deciding if I need to switch `eyre` to have a custom `Result` type, which would also mean I need `try_trait_v2` to be stabilized, cc `@scottmcm.` If the performance impact is minor enough in the general case I think I would prefer that the default `Result` type has the ability to track location information for consistency with `panic` error reporting, and leave it to applications that need particularly high performance to handle the micro optimizations of introducing their own efficient custom Result type or matching manually.
Alternatively, I wonder if the performance penalty on code that doesn't use the location information on `FromResidual` could be mitigated via new optimizations.
Stabilize `iter::zip`
Hello all!
As the tracking issue (#83574) for `iter::zip` completed the final commenting period without any concerns being raised, I hereby submit this stabilization PR on the issue.
As the pull request that introduced the feature (#82917) states, the `iter::zip` function is a shorter way to zip two iterators. As it's generally a quality-of-life/ergonomic improvement, it has been integrated into the codebase without any trouble, and has been
used in many places across the rust compiler and standard library since March without any issues.
For more details, I would refer to `@cuviper's` original PR, or the [function's documentation](https://doc.rust-lang.org/std/iter/fn.zip.html).
Tweak errors coming from `for`-loop, `?` and `.await` desugaring
* Suggest removal of `.await` on non-`Future` expression
* Keep track of obligations introduced by desugaring
* Remove span pointing at method for obligation errors coming from desugaring
* Point at called local sync `fn` and suggest making it `async`
```
error[E0277]: `()` is not a future
--> $DIR/unnecessary-await.rs:9:10
|
LL | boo().await;
| -----^^^^^^ `()` is not a future
| |
| this call returns `()`
|
= help: the trait `Future` is not implemented for `()`
help: do not `.await` the expression
|
LL - boo().await;
LL + boo();
|
help: alternatively, consider making `fn boo` asynchronous
|
LL | async fn boo () {}
| +++++
```
Fix#66731.
Stabilize asm! and global_asm!
Tracking issue: #72016
It's been almost 2 years since the original [RFC](https://github.com/rust-lang/rfcs/pull/2850) was posted and we're finally ready to stabilize this feature!
The main changes in this PR are:
- Removing `asm!` and `global_asm!` from the prelude as per the decision in #87228.
- Stabilizing the `asm` and `global_asm` features.
- Removing the unstable book pages for `asm` and `global_asm`. The contents are moved to the [reference](https://github.com/rust-lang/reference/pull/1105) and [rust by example](https://github.com/rust-lang/rust-by-example/pull/1483).
- All links to these pages have been removed to satisfy the link checker. In a later PR these will be replaced with links to the reference or rust by example.
- Removing the automatic suggestion for using `llvm_asm!` instead of `asm!` if you're still using the old syntax, since it doesn't work anymore with `asm!` no longer being in the prelude. This only affects code that predates the old LLVM-style `asm!` being renamed to `llvm_asm!`.
- Updating `stdarch` and `compiler-builtins`.
- Updating all the tests.
r? `@joshtriplett`
This'll still go via slices eventually for large arrays, but this way slice comparisons to short arrays can use the same memcmp-avoidance tricks.
Added some tests for all the combinations to make sure I didn't accidentally infinitely-recurse something.
Make split_inclusive() on an empty slice yield an empty output
`[].split_inclusive()` currently yields a single, empty slice. That's
different from `"".split_inslusive()`, which yields no output at
all. I think that makes the slice version harder to use.
The case where I ran into this bug was when writing code for
generating a diff between two slices of bytes. I wanted to prefix
removed lines with "-" and a added lines with "+". Due to
`split_inclusive()`'s current behavior, that means that my code prints
just a "-" or "+" for empty files. I suspect most existing callers
have similar "bugs" (which would be fixed by this patch).
Closes#89716.
Stabilize `ControlFlow::{is_break, is_continue}`
The type itself was stabilized in 1.55, but using it is not ergonomic without these helper functions. Stabilize them.
r? rust-lang/libs-api
They are also removed from the prelude as per the decision in
https://github.com/rust-lang/rust/issues/87228.
stdarch and compiler-builtins are updated to work with the new, stable
asm! and global_asm! macros.
Make certain panicky stdlib functions behave better under panic_immediate_abort
The stdlib has a `panic_immediate_abort` feature that turns panics into immediate aborts, without any formatting/display logic. This feature was [introduced](https://github.com/rust-lang/rust/pull/55011) primarily for codesize-constrained situations.
Unfortunately, this win doesn't quite propagate to `Result::expect()` and `Result::unwrap()`, while the formatting machinery is reduced, `expect()` and `unwrap()` both call `unwrap_failed("msg", &err)` which has a signature of `fn unwrap_failed(msg: &str, error: &dyn fmt::Debug)` and is `#[inline(never)]`. This means that `unwrap_failed` will unconditionally construct a `dyn Debug` trait object even though the object is never used in the function.
Constructing a trait object (even if you never call a method on it!) forces rust to include the vtable and any dependencies. This means that in `panic_immediate_abort` mode, calling expect/unwrap on a Result will pull in a whole bunch of formatting code for the error type even if it's completely unused.
This PR swaps out the function with one that won't require a trait object such that it won't force the inclusion of vtables in the code. It also gates off `#[inline(never)]` in a bunch of other places where allowing the inlining of an abort may be useful (this kind of thing is already done elsewhere in the stdlib).
I don't know how to write a test for this; we don't really seem to have any tests for `panic_immediate_abort` anyway so perhaps it's fine as is.
Minor improvements to `future::join!`'s implementation
This is a follow-up from #91645, regarding [some remarks I made](https://rust-lang.zulipchat.com/#narrow/stream/187312-wg-async-foundations/topic/join!/near/264293660).
Mainly:
- it hides the recursive munching through a private `macro`, to avoid leaking such details (a corollary is getting rid of the need to use ``@`` to disambiguate);
- it uses a `match` binding, _outside_ the `async move` block, to better match the semantics from function-like syntax;
- it pre-pins the future before calling into `poll_fn`, since `poll_fn`, alone, cannot guarantee that its capture does not move (to clarify: I believe the previous code was sound, thanks to the outer layer of `async`. But I find it clearer / more robust to refactorings this way 🙂).
- it uses `@ibraheemdev's` very neat `.ready()?`;
- it renames `Took` to `Taken` for consistency with `Done` (tiny nit 😄).
~~TODO~~Done:
- [x] Add unit tests to enforce the function-like `:value` semantics are respected.
r? `@nrc`
Add spin_loop hint for RISC-V architecture
This commit uses the PAUSE instruction (https://github.com/rust-lang/stdarch/pull/1262) to implement RISC-V spin loop, and updates `stdarch` submodule to use the merged PAUSE instruction.
Rollup of 11 pull requests
Successful merges:
- #91668 (Remove the match on `ErrorKind::Other`)
- #91678 (Add tests fixed by #90023)
- #91679 (Move core/stream/stream/mod.rs to core/stream/stream.rs)
- #91681 (fix typo in `intrinsics::raw_eq` docs)
- #91686 (Fix `Vec::reserve_exact` documentation)
- #91697 (Delete Utf8Lossy::from_str)
- #91706 (Add unstable book entries for parts of asm that are not being stabilized)
- #91709 (Replace iterator-based set construction by *Set::From<[T; N]>)
- #91716 (Improve x.py logging and defaults a bit more)
- #91747 (Add pierwill to .mailmap)
- #91755 (Fix since attribute for const_linked_list_new feature)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Delete Utf8Lossy::from_str
This whole type is marked as being for str internals only, but this constructor is never used by str internals. If you had a &str already and wanted to lossy display it or iterate its lossy utf8 chunks, you would simply not use Utf8Lossy because the whole &str is known to be one contiguous valid utf8 chunk.
If code really does need to obtain a value of type &Utf8Lossy somewhere, and has only a &str, `Utf8Lossy::from_bytes(s.as_bytes())` remains available. As currently implemented, there is no performance penalty relative to `from_str` i.e. the Utf8Lossy does not "remember" that it was constructed using `from_str` to bypass later utf8 decoding.
adjust const_eval_select documentation
"The Rust compiler assumes" indicates that this is language UB, but [I don't think that is a good idea](https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/topic/const_eval_select.20assumptions). This UB would be very hard to test for and looks like a way-too-big footgun. ``@oli-obk`` suggested this is meant to be more like "library UB", so I tried to adjust the docs accordingly.
I also removed all references to "referential transparency". That is a rather vague concept used to mean many different things, and I honestly have no idea what exactly is meant by it in this specific instance. But I assume ``@fee1-dead`` had in their mind a property that all `const fn` code upholds, so by demanding that the runtime code and the const-time code are *observably equivalent*, whatever that property is would also be enforced here.
Cc ``@rust-lang/wg-const-eval``
Fix incorrect stability attributes
These two instances were caught in #90356, but that PR isn't going to be merged. I've extracted these to ensure it's still correct.
``@rustbot`` label: +A-stability +C-cleanup +S-waiting-on-review
This is a follow-up from #91645, regarding [some remarks I made](https://rust-lang.zulipchat.com/#narrow/stream/187312-wg-async-foundations/topic/join!/near/264293660).
Mainly:
- it hides the recursive munching through a private `macro`, to avoid leaking such details (a corollary is getting rid of the need to use `@` to disambiguate);
- it uses a `match` binding, _outside_ the `async move` block, to better match the semantics from function-like syntax;
- it pre-pins the future before calling into `poll_fn`, since `poll_fn`, alone, cannot guarantee that its capture does not move;
- it uses `.ready()?` since it's such a neat pattern;
- it renames `Took` to `Taken` for consistency with `Done`.
Rollup of 6 pull requests
Successful merges:
- #87599 (Implement concat_bytes!)
- #89999 (Update std::env::temp_dir to use GetTempPath2 on Windows when available.)
- #90796 (Remove the reg_thumb register class for asm! on ARM)
- #91042 (Use Vec extend instead of repeated pushes on several places)
- #91634 (Do not attempt to suggest help for overly malformed struct/function call)
- #91685 (Install llvm tools to sysroot when assembling local toolchain)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Implement concat_bytes!
This implements the unstable `concat_bytes!` macro, which has tracking issue #87555. It can be used like:
```rust
#![feature(concat_bytes)]
fn main() {
assert_eq!(concat_bytes!(), &[]);
assert_eq!(concat_bytes!(b'A', b"BC", [68, b'E', 70]), b"ABCDEF");
}
```
If strings or characters are used where byte strings or byte characters are required, it suggests adding a `b` prefix. If a number is used outside of an array it suggests arrayifying it. If a boolean is used it suggests replacing it with the numeric value of that number. Doubly nested arrays of bytes are disallowed.
Sync portable-simd to remove autosplats
This PR syncs portable-simd in up to a8385522ad in order to address the type inference breakages documented on nightly in https://github.com/rust-lang/rust/issues/90904 by removing the vector + scalar binary operations (called "autosplats", "broadcasting", or "rank promotion", depending on who you ask) that allow `{scalar} + &'_ {scalar}` to fail in some cases, because it becomes possible the programmer may have meant `{scalar} + &'_ {vector}`.
A few quality-of-life improvements make their way in as well:
- Lane counts can now go to 64, as LLVM seems to have fixed their miscompilation for those.
- `{i,u}8x64` to `__m512i` is now available.
- a bunch of `#[must_use]` notes appear throughout the module.
- Some implementations, mostly instances of `impl core::ops::{Op}<Simd> for Simd` that aren't `{vector} + {vector}` (e.g. `{vector} + &'_ {vector}`), leverage some generics and `where` bounds now to make them easier to understand by reducing a dozen implementations into one (and make it possible for people to open the docs on less burly devices).
- And some internal-only improvements.
None of these changes should affect a beta backport, only actual users of `core::simd` (and most aren't even visible in the programmatic sense), though I can extract an even more minimal changeset for beta if necessary. It seemed simpler to just keep moving forward.
`array::IntoIter` has a bunch of really handy logic for dealing with partial arrays, but it's currently hamstrung by only being creatable from a fully-initialized array.
This PR adds two new constructors:
- a safe & const `empty`, since `[].into_iter()` gives `<T, 0>`, not `<T, N>`.
- an unsafe `from_raw_parts`, to allow experimentation with new uses.
(Slice & vec iterators don't need `from_raw_parts` because you `from_raw_parts` the slice or vec instead, but there's no useful way to made a `<[T; N]>::from_raw_parts`, so I think this is a reasonable place to have one.)
Reintroduce `into_future` in `.await` desugaring
This is a reintroduction of the remaining parts from https://github.com/rust-lang/rust/pull/65244 that have not been relanded yet.
This isn't quite ready to merge yet. The last attempt was reverting due to performance regressions, so we need to make sure this does not introduce those issues again.
Issues #67644, #67982
/cc `@yoshuawuyts`
Make `array::{try_from_fn, try_map}` and `Iterator::try_find` generic over `Try`
Fixes#85115
This only updates unstable functions.
`array::try_map` didn't actually exist before; this adds it under the still-open tracking issue #79711 from the old PR #79713.
Tracking issue for the new trait: #91285
This would also solve the return type question in for the proposed `Iterator::try_reduce` in #87054
SIMD-style optimizations are the most common use for `[T]::align_to(_mut)`, but that's `unsafe`. So these are *safe* wrappers around it, now that we have the `Simd` type available, to make it easier to use.
```rust
impl [T] {
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T]);
pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T]);
}
```
disable tests in Miri that take too long
Comparing slices of length `usize::MAX` diverges in Miri. In fact these tests even diverge in rustc unless `-O` is passed. I tried this code to check that:
```rust
#![feature(slice_take)]
const EMPTY_MAX: &'static [()] = &[(); usize::MAX];
fn main() {
let mut slice: &[_] = &[(); usize::MAX];
println!("1");
assert_eq!(Some(&[] as _), slice.take(usize::MAX..));
println!("2");
let remaining: &[_] = EMPTY_MAX;
println!("3");
assert_eq!(remaining, slice);
println!("4");
}
```
So, disable these tests in Miri for now.
Fixes 85115
This only updates unstable functions.
`array::try_map` didn't actually exist before, despite the tracking issue 79711 still being open from the old PR 79713.
CTFE: support assert_zero_valid and assert_uninit_valid
This ensures the implementation of all three type-based assert_ intrinsics remains consistent in Miri.
`assert_inhabited` recently got stabilized in https://github.com/rust-lang/rust/pull/90896 (meaning stable `const fn` can call it), so do the same with these other intrinsics.
Cc ```@rust-lang/wg-const-eval```