In some places we use `Vec<Attribute>` and some places we use
`ThinVec<Attribute>` (a.k.a. `AttrVec`). This results in various points
where we have to convert between `Vec` and `ThinVec`.
This commit changes the places that use `Vec<Attribute>` to use
`AttrVec`. A lot of this is mechanical and boring, but there are
some interesting parts:
- It adds a few new methods to `ThinVec`.
- It implements `MapInPlace` for `ThinVec`, and introduces a macro to
avoid the repetition of this trait for `Vec`, `SmallVec`, and
`ThinVec`.
Overall, it makes the code a little nicer, and has little effect on
performance. But it is a precursor to removing
`rustc_data_structures::thin_vec::ThinVec` and replacing it with
`thin_vec::ThinVec`, which is implemented more efficiently.
All derive ops currently use match-destructuring to access fields. This
is reasonable for enums, but sub-optimal for structs. E.g.:
```
fn eq(&self, other: &Point) -> bool {
match *other {
Self { x: ref __self_1_0, y: ref __self_1_1 } =>
match *self {
Self { x: ref __self_0_0, y: ref __self_0_1 } =>
(*__self_0_0) == (*__self_1_0) &&
(*__self_0_1) == (*__self_1_1),
},
}
}
```
This commit changes derive ops on structs to use field access instead, e.g.:
```
fn eq(&self, other: &Point) -> bool {
self.x == other.x && self.y == other.y
}
```
This is faster to compile, results in smaller binaries, and is simpler to
generate. Unfortunately, we have to keep the old pattern generating code around
for `repr(packed)` structs because something like `&self.x` (which doesn't show
up in `PartialEq` ops, but does show up in `Debug` and `Hash` ops) isn't
allowed. But this commit at least changes those cases to use let-destructuring
instead of match-destructuring, e.g.:
```
fn hash<__H: ::core:#️⃣:Hasher>(&self, state: &mut __H) -> () {
{
let Self(ref __self_0_0) = *self;
{ ::core:#️⃣:Hash::hash(&(*__self_0_0), state) }
}
}
```
There are some unnecessary blocks remaining in the generated code, but I
will fix them in a follow-up PR.
This commit adds new methods that combine sequences of existing
formatting methods.
- `Formatter::debug_{tuple,struct}_field[12345]_finish`, equivalent to a
`Formatter::debug_{tuple,struct}` + N x `Debug{Tuple,Struct}::field` +
`Debug{Tuple,Struct}::finish` call sequence.
- `Formatter::debug_{tuple,struct}_fields_finish` is similar, but can
handle any number of fields by using arrays.
These new methods are all marked as `doc(hidden)` and unstable. They are
intended for the compiler's own use.
Special-casing up to 5 fields gives significantly better performance
results than always using arrays (as was tried in #95637).
The commit also changes the `Debug` deriving code to use these new methods. For
example, where the old `Debug` code for a struct with two fields would be like
this:
```
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match *self {
Self {
f1: ref __self_0_0,
f2: ref __self_0_1,
} => {
let debug_trait_builder = &mut ::core::fmt::Formatter::debug_struct(f, "S2");
let _ = ::core::fmt::DebugStruct::field(debug_trait_builder, "f1", &&(*__self_0_0));
let _ = ::core::fmt::DebugStruct::field(debug_trait_builder, "f2", &&(*__self_0_1));
::core::fmt::DebugStruct::finish(debug_trait_builder)
}
}
}
```
the new code is like this:
```
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match *self {
Self {
f1: ref __self_0_0,
f2: ref __self_0_1,
} => ::core::fmt::Formatter::debug_struct_field2_finish(
f,
"S2",
"f1",
&&(*__self_0_0),
"f2",
&&(*__self_0_1),
),
}
}
```
This shrinks the code produced for `Debug` instances
considerably, reducing compile times and binary sizes.
Co-authored-by: Scott McMurray <scottmcm@users.noreply.github.com>
As an example:
#[test]
#[ignore = "not yet implemented"]
fn test_ignored() {
...
}
Will now render as:
running 2 tests
test tests::test_ignored ... ignored, not yet implemented
test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured; 0 filtered out; finished in 0.00s
Found with https://github.com/est31/warnalyzer.
Dubious changes:
- Is anyone else using rustc_apfloat? I feel weird completely deleting
x87 support.
- Maybe some of the dead code in rustc_data_structures, in case someone
wants to use it in the future?
- Don't change rustc_serialize
I plan to scrap most of the json module in the near future (see
https://github.com/rust-lang/compiler-team/issues/418) and fixing the
tests needed more work than I expected.
TODO: check if any of the comments on the deleted code should be kept.
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
We now collect tokens for the underlying node wrapped by `StmtKind`
instead of storing tokens directly in `Stmt`.
`LazyTokenStream` now supports capturing a trailing semicolon after it
is initially constructed. This allows us to avoid refactoring statement
parsing to wrap the parsing of the semicolon in `parse_tokens`.
Attributes on item statements
(e.g. `fn foo() { #[bar] struct MyStruct; }`) are now treated as
item attributes, not statement attributes, which is consistent with how
we handle attributes on other kinds of statements. The feature-gating
code is adjusted so that proc-macro attributes are still allowed on item
statements on stable.
Two built-in macros (`#[global_allocator]` and `#[test]`) needed to be
adjusted to support being passed `Annotatable::Stmt`.
We currently only attach tokens when parsing a `:stmt` matcher for a
`macro_rules!` macro. Proc-macro attributes on statements are still
unstable, and need additional work.