Remove wrong note for short circuiting operators
They *are* representable by traits, even if the short-circuiting behaviour requires a different approach than the non-short-circuiting operators. For an example proposal, see the postponed [RFC 2722](https://github.com/rust-lang/rfcs/pull/2722). As it is not accurate, remove most of the note.
They *are* representable by traits, even if the short-circuiting
behaviour requires a different approach than the non-short-circuiting
operators. For an example proposal, see the postponed RFC 2722.
As it is not accurate, reword the note.
attempt to clarify align_to docs
This is not intended the change the docs at all, but `@workingjubilee` said the current docs are incomprehensible to some people so this is an attempt to fix that. No idea if it helps, so -- feedback welcome.
(Please let's not use this to discuss *changing* the spec. Whoever wants to change the spec should please make a separate PR for that.)
Replace usage of `ResumeTy` in async lowering with `Context`
Replaces using `ResumeTy` / `get_context` in favor of using `&'static mut Context<'_>`.
Usage of the `'static` lifetime here is technically "cheating", and replaces the raw pointer in `ResumeTy` and the `get_context` fn that pulls the correct lifetimes out of thin air.
fixes https://github.com/rust-lang/rust/issues/104828 and https://github.com/rust-lang/rust/pull/104321#issuecomment-1336363077
r? `@oli-obk`
Replaces using `ResumeTy` / `get_context` in favor of using `&'static mut Context<'_>`.
Usage of the `'static` lifetime here is technically "cheating", and replaces
the raw pointer in `ResumeTy` and the `get_context` fn that pulls the
correct lifetimes out of thin air.
PartialEq: PERs are homogeneous
PartialEq claims that it corresponds to a PER, but that is only a well-defined statement when `Rhs == Self`. There is no standard notion of PER on a relation between two different sets/types. So move this out of the first paragraph and clarify this.
Adjust inlining attributes around panic_immediate_abort
The goal of `panic_immediate_abort` is to permit the panic runtime and formatting code paths to be optimized away. But while poking through some disassembly of a small program compiled with that option, I found that was not the case. Enabling LTO did address that specific issue, but enabling LTO is a steep price to pay for this feature doing its job.
This PR fixes that, by tweaking two things:
* All the slice indexing functions that we `const_eval_select` on get `#[inline]`. `objdump -dC` told me that originally some `_ct` functions could end up in an executable. I won't pretend to understand what's going on there.
* Normalize attributes across all `panic!` wrappers: use `inline(never) + cold` normally, and `inline` when `panic_immediate_abort` is enabled.
But also, with LTO and `panic_immediate_abort` enabled, this patch knocks ~709 kB out of the `.text` segment of `librustc_driver.so`. That is slightly surprising to me, my best theory is that this shifts some inlining earlier in compilation, enabling some subsequent optimizations. The size improvement of `librustc_driver.so` with `panic_immediate_abort` due to this patch is greater with LTO than without LTO, which I suppose backs up this theory.
I do not know how to test this. I would quite like to, because I think what this is solving was an accidental regression. This only works with `-Zbuild-std` which is a cargo flag, and thus can't be used in a rustc codegen test.
r? `@thomcc`
---
I do not seriously think anyone is going to use a compiler built with `panic_immediate_abort`, but I wanted a big complicated Rust program to try this out on, and the compiler is such.
Add `type_ascribe!` macro as placeholder syntax for type ascription
This makes it still possible to test the internal semantics of type ascription even once the `:`-syntax is removed from the parser. The macro now gets used in a bunch of UI tests that test the semantics and not syntax of type ascription.
I might have forgotten a few tests but this should hopefully be most of them. The remaining ones will certainly be found once type ascription is removed from the parser altogether.
Part of #101728
`#![custom_mir]`: Various improvements
This PR makes a bunch of improvements to `#![custom_mir]`. Ideally this would be 4 PRs, one for each commit, but those would take forever to get merged and be a pain to juggle. Should still be reviewed one commit at a time though.
### Commit 1: Support arbitrary `let`
Before this change, all locals used in the body need to be declared at the top of the `mir!` invocation, which is rather annoying. We attempt to change that.
Unfortunately, we still have the requirement that the output of the `mir!` macro must resolve, typecheck, etc. Because of that, we can't just accept this in the THIR -> MIR parser because something like
```rust
{
let x = 0;
Goto(other)
}
other = {
RET = x;
Return()
}
```
will fail to resolve. Instead, the implementation does macro shenanigans to find the let declarations and extract them as part of the `mir!` macro. That *works*, but it is fairly complicated and degrades debuginfo by quite a bit. Specifically, the spans for any statements and declarations that are affected by this are completely wrong. My guess is that this is a net improvement though.
One way to recover some of the debuginfo would be to not support type annotations in the `let` statements, which would allow us to parse like `let $stmt:stmt`. That seems quite surprising though.
### Commit 2: Parse consts
Reuses most of the const parsing from regular Mir building for building custom mir
### Commit 3: Parse statics
Statics are slightly weird because the Mir primitive associated with them is a reference/pointer to them, so this is factored out separately.
### Commit 4: Fix some spans
A bunch of the spans were non-ideal, so we adjust them to be much more helpful.
r? `@oli-obk`
Add slice to the stack allocated string comment
Precise that the "stack allocated string" is not a string but a string slice.
``@rustbot`` label +A-docs
Stop peeling the last iteration of the loop in `Vec::resize_with`
`resize_with` uses the `ExtendWith` code that peels the last iteration:
341d8b8a2c/library/alloc/src/vec/mod.rs (L2525-L2529)
But that's kinda weird for `ExtendFunc` because it does the same thing on the last iteration anyway:
341d8b8a2c/library/alloc/src/vec/mod.rs (L2494-L2502)
So this just has it use the normal `extend`-from-`TrustedLen` code instead.
r? `@ghost`
Manually implement PartialEq for Option<T> and specialize non-nullable types
This PR manually implements `PartialEq` and `StructuralPartialEq` for `Option`, which seems to produce slightly better codegen than the automatically derived implementation.
It also allows specializing on the `core::num::NonZero*` and `core::ptr::NonNull` types, taking advantage of the niche optimization by transmuting the `Option<T>` to `T` to be compared directly, which can be done in just two instructions.
A comparison of the original, new and specialized code generation is available [here](https://godbolt.org/z/dE4jxdYsa).