compiler/rustc_codegen_ssa/src/mir/place.rs: Remove LLVM bug workaround
This memset was inserted as a workaround to Rust issue #34427, which was
an LLVM bug that apparently no longer manifests.
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos
Replace `Body::basic_blocks()` with field access
Since the refactoring in #98930, it is possible to borrow the basic blocks
independently from other parts of MIR by accessing the `basic_blocks` field
directly.
Replace unnecessary `Body::basic_blocks()` method with a direct field access,
which has an additional benefit of borrowing the basic blocks only.
Because `PassMode::Cast` is by far the largest variant, but is
relatively rare.
This requires making `PassMode` not impl `Copy`, and `Clone` is no
longer necessary. This causes lots of sigil adjusting, but nothing very
notable.
Simplify some code that depend on Deref
Now that we can assume #97025 works, it's safe to expect Deref is always in the first place of projections. With this, I was able to simplify some code that depended on Deref's place in projections. When we are able to move Derefer before `ElaborateDrops` successfully we will be able to optimize more places.
r? `@oli-obk`
Add fine-grained LLVM CFI support to the Rust compiler
This PR improves the LLVM Control Flow Integrity (CFI) support in the Rust compiler by providing forward-edge control flow protection for Rust-compiled code only by aggregating function pointers in groups identified by their return and parameter types.
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by identifying C char and integer type uses at the time types are encoded (see Type metadata in the design document in the tracking issue https://github.com/rust-lang/rust/issues/89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e., -Clto).
Thank you again, `@eddyb,` `@nagisa,` `@pcc,` and `@tmiasko` for all the help!
This commit improves the LLVM Control Flow Integrity (CFI) support in
the Rust compiler by providing forward-edge control flow protection for
Rust-compiled code only by aggregating function pointers in groups
identified by their return and parameter types.
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by identifying C char and integer type uses at the
time types are encoded (see Type metadata in the design document in the
tracking issue #89653).
LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e.,
-Clto).
Fix unreachable coverage generation for inlined functions
To generate a function coverage we need at least one coverage counter,
so a coverage from unreachable blocks is retained only when some live
counters remain.
The previous implementation incorrectly retained unreachable coverage,
because it didn't account for the fact that those live counters can
belong to another function due to inlining.
Fixes#98833.
Use constant eval to do strict mem::uninit/zeroed validity checks
I'm not sure about the code organisation here, I just dumped the check in rustc_const_eval at the root. Not hard to move it elsewhere, in any case.
Also, this means cranelift codegen intrinsics lose the strict checks, since they don't seem to depend on rustc_const_eval, and I didn't see a point in keeping around two copies.
I also left comments in the is_zero_valid methods about "uhhh help how do i do this", those apply to both methods equally.
Also rustc_codegen_ssa now depends on rustc_const_eval... is this okay?
Pinging `@RalfJung` since you were the one who mentioned this to me, so I'm assuming you're interested.
Haven't had a chance to run full tests on this since it's really warm, and it's 1AM, I'll check out any failures/comments in the morning :)
There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
`ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.
So instead add new ZST variants to those types that did not have other variants
which could be used for this purpose.
Use less string interning
This removes string interning in a couple of places where doing so won't result in perf improvements. I also switched one place to use pre-interned symbols.
rustc_codegen_ssa: use `project_index`, not `project_field`, for array literals.
See https://github.com/rust-lang/rust/pull/98615#issuecomment-1170082774 for some context.
In short, we were using `project_field` even for array `mir::Rvalue::Aggregate`s, which results in benchmarks like `deep-vector.rs` (and presumably also some real-world usecases?) being impacted by how we handle non-array aggregate fields.
(This is a separate PR so that we can measure the perf effects in isolation)
r? `@nikic`
Allow arithmetic and certain bitwise ops on AtomicPtr
This is mainly to support migrating from `AtomicUsize`, for the strict provenance experiment.
This is a pretty dubious set of APIs, but it should be sufficient to allow code that's using `AtomicUsize` to manipulate a tagged pointer atomically. It's under a new feature gate, `#![feature(strict_provenance_atomic_ptr)]`, but I'm not sure if it needs its own tracking issue. I'm happy to make one, but it's not clear that it's needed.
I'm unsure if it needs changes in the various non-LLVM backends. Because we just cast things to integers anyway (and were already doing so), I doubt it.
API change proposal: https://github.com/rust-lang/libs-team/issues/60Fixes#95492
Change enum->int casts to not go through MIR casts.
follow-up to https://github.com/rust-lang/rust/pull/96814
this simplifies all backends and even gives LLVM more information about the return value of `Rvalue::Discriminant`, enabling optimizations in more cases.
Enable MIR inlining
Continuation of https://github.com/rust-lang/rust/pull/82280 by `@wesleywiser.`
#82280 has shown nice compile time wins could be obtained by enabling MIR inlining.
Most of the issues in https://github.com/rust-lang/rust/issues/81567 are now fixed,
except the interaction with polymorphization which is worked around specifically.
I believe we can proceed with enabling MIR inlining in the near future
(preferably just after beta branching, in case we discover new issues).
Steps before merging:
- [x] figure out the interaction with polymorphization;
- [x] figure out how miri should deal with extern types;
- [x] silence the extra arithmetic overflow warnings;
- [x] remove the codegen fulfilment ICE;
- [x] remove the type normalization ICEs while compiling nalgebra;
- [ ] tweak the inlining threshold.
Added llvm lifetime annotations to function call argument temporaries.
The goal of this change is to ensure that llvm will do stack slot
optimization on these temporaries. This ensures that in code like:
```rust
const A: [u8; 1024] = [0; 1024];
fn copy_const() {
f(A);
f(A);
}
```
we only use 1024 bytes of stack space, instead of 2048 bytes.
I am new to developing for the rust compiler, and as such not entirely sure, but I believe this should be sufficient to close#98156.
Also, this does not contain a test case to ensure this keeps working, primarily because I am not sure how to go about testing this. I would love some suggestions as to how that could be approached.
Simplify memory ordering intrinsics
This changes the names of the atomic intrinsics to always fully include their memory ordering arguments.
```diff
- atomic_cxchg
+ atomic_cxchg_seqcst_seqcst
- atomic_cxchg_acqrel
+ atomic_cxchg_acqrel_release
- atomic_cxchg_acqrel_failrelaxed
+ atomic_cxchg_acqrel_relaxed
// And so on.
```
- `seqcst` is no longer implied
- The failure ordering on chxchg is no longer implied in some cases, but now always explicitly part of the name.
- `release` is no longer shortened to just `rel`. That was especially confusing, since `relaxed` also starts with `rel`.
- `acquire` is no longer shortened to just `acq`, such that the names now all match the `std::sync::atomic::Ordering` variants exactly.
- This now allows for more combinations on the compare exchange operations, such as `atomic_cxchg_acquire_release`, which is necessary for #68464.
- This PR only exposes the new possibilities through unstable intrinsics, but not yet through the stable API. That's for [a separate PR](https://github.com/rust-lang/rust/pull/98383) that requires an FCP.
Suffixes for operations with a single memory order:
| Order | Before | After |
|---------|--------------|------------|
| Relaxed | `_relaxed` | `_relaxed` |
| Acquire | `_acq` | `_acquire` |
| Release | `_rel` | `_release` |
| AcqRel | `_acqrel` | `_acqrel` |
| SeqCst | (none) | `_seqcst` |
Suffixes for compare-and-exchange operations with two memory orderings:
| Success | Failure | Before | After |
|---------|---------|--------------------------|--------------------|
| Relaxed | Relaxed | `_relaxed` | `_relaxed_relaxed` |
| Relaxed | Acquire | ❌ | `_relaxed_acquire` |
| Relaxed | SeqCst | ❌ | `_relaxed_seqcst` |
| Acquire | Relaxed | `_acq_failrelaxed` | `_acquire_relaxed` |
| Acquire | Acquire | `_acq` | `_acquire_acquire` |
| Acquire | SeqCst | ❌ | `_acquire_seqcst` |
| Release | Relaxed | `_rel` | `_release_relaxed` |
| Release | Acquire | ❌ | `_release_acquire` |
| Release | SeqCst | ❌ | `_release_seqcst` |
| AcqRel | Relaxed | `_acqrel_failrelaxed` | `_acqrel_relaxed` |
| AcqRel | Acquire | `_acqrel` | `_acqrel_acquire` |
| AcqRel | SeqCst | ❌ | `_acqrel_seqcst` |
| SeqCst | Relaxed | `_failrelaxed` | `_seqcst_relaxed` |
| SeqCst | Acquire | `_failacq` | `_seqcst_acquire` |
| SeqCst | SeqCst | (none) | `_seqcst_seqcst` |