liballoc: introduce String, Vec const-slicing
This change `const`-qualifies many methods on `Vec` and `String`, notably `as_slice`, `as_str`, `len`. These changes are made behind the unstable feature flag `const_vec_string_slice`.
## Motivation
This is to support simultaneous variance over ownership and constness. I have an enum type that may contain either `String` or `&str`, and I want to produce a `&str` from it in a possibly-`const` context.
```rust
enum StrOrString<'s> {
Str(&'s str),
String(String),
}
impl<'s> StrOrString<'s> {
const fn as_str(&self) -> &str {
match self {
// In a const-context, I really only expect to see this variant, but I can't switch the implementation
// in some mode like #[cfg(const)] -- there has to be a single body
Self::Str(s) => s,
// so this is a problem, since it's not `const`
Self::String(s) => s.as_str(),
}
}
}
```
Currently `String` and `Vec` don't support this, but can without functional changes. Similar logic applies for `len`, `capacity`, `is_empty`.
## Changes
The essential thing enabling this change is that `Unique::as_ptr` is `const`. This lets us convert `RawVec::ptr` -> `Vec::as_ptr` -> `Vec::as_slice` -> `String::as_str`.
I had to move the `Deref` implementations into `as_{str,slice}` because `Deref` isn't `#[const_trait]`, but I would expect this change to be invisible up to inlining. I moved the `DerefMut` implementations as well for uniformity.
This change `const`-qualifies many methods on Vec and String, notably
`as_slice`, `as_str`, `len`. These changes are made behind the unstable
feature flag `const_vec_string_slice` with the following tracking issue:
https://github.com/rust-lang/rust/issues/129041
Since the stabilization in #127679 has reached stage0, 1.82-beta, we can
start using `&raw` freely, and even the soft-deprecated `ptr::addr_of!`
and `ptr::addr_of_mut!` can stop allowing the unstable feature.
I intentionally did not change any documentation or tests, but the rest
of those macro uses are all now using `&raw const` or `&raw mut` in the
standard library.
Add `NonNull` convenience methods to `Box` and `Vec`
Implements the ACP: https://github.com/rust-lang/libs-team/issues/418.
The docs for the added methods are mostly copied from the existing methods that use raw pointers instead of `NonNull`.
I'm new to this "contributing to rustc" thing, so I'm sorry if I did something wrong. In particular, I don't know what the process is for creating a new unstable feature. Please advise me if I should do something. Thank you.
some const cleanup: remove unnecessary attributes, add const-hack indications
I learned that we use `FIXME(const-hack)` on top of the "const-hack" label. That seems much better since it marks the right place in the code and moves around with the code. So I went through the PRs with that label and added appropriate FIXMEs in the code. IMO this means we can then remove the label -- Cc ``@rust-lang/wg-const-eval.``
I also noticed some const stability attributes that don't do anything useful, and removed them.
r? ``@fee1-dead``
Apply size optimizations to panic machinery and some cold functions
* std dependencies gimli and addr2line are now built with opt-level=s
* various panic-related methods and `#[cold]` methods are now marked `#[optimize(size)]`
Panics should be cold enough that it doesn't make sense to optimize them for speed. The only tradeoff here is if someone does a lot of backtrace captures (without panics) and printing then the opt-level change might impact their perf.
Seems to be the first use of the optimize attribute. Tracking issue #54882
Add `#[must_use]` to some `into_raw*` functions.
cc #121287
r? ``@cuviper``
Adds `#[must_use = "losing the pointer will leak memory"]`[^1] to `Box::into_raw(_with_allocator)`, `Vec::into_raw_parts(_with_alloc)`, `String::into_raw_parts`[^2], and `rc::{Rc, Weak}::into_raw_with_allocator` (Rc's normal `into_raw` and all of `Arc`'s `into_raw*`s are already `must_use`).
Adds `#[must_use = "losing the raw <resource name may leak resources"]` to `IntoRawFd::into_raw_fd`, `IntoRawSocket::into_raw_socket`, and `IntoRawHandle::into_raw_handle`.
[^1]: "*will* leak memory" may be too-strong wording (since `Box`/`Vec`/`String`/`rc::Weak` might not have a backing allocation), but I left it as-is for simplicity and consistency.
[^2]: `String::into_raw_parts`'s `must_use` message is changed from the previous (possibly misleading) "`self` will be dropped if the result is not used".
Optimize empty case in Vec::retain
While profiling some code that happens to call Vec::retain() in a tight loop, I noticed more runtime than expected in retain, even in a bench case where the vector was always empty. When I wrapped my call to retain in `if !myvec.is_empty()` I saw faster execution compared with doing retain on an empty vector.
On closer inspection, Vec::retain is doing set_len(0) on itself even when the vector is empty, and then resetting the length again in BackshiftOnDrop::drop.
Unscientific screengrab of a flamegraph illustrating how we end up spending time in set_len and drop:

Fix doc nits
Many tiny changes to stdlib doc comments to make them consistent (for example "Returns foo", rather than "Return foo"), adding missing periods, paragraph breaks, backticks for monospace style, and other minor nits.
from_ref, from_mut: clarify documentation
This was brought up [here](https://github.com/rust-lang/rust/issues/56604#issuecomment-2143193486). The domain of quantification is generally always constrained by the type in the type signature, and I am not sure it's always worth spelling that out explicitly as that makes things exceedingly verbose. But since this was explicitly brought up, let's clarify.
Remove memory leaks in doctests in `core`, `alloc`, and `std`
cc `@RalfJung` https://github.com/rust-lang/rust/issues/126067https://github.com/rust-lang/miri/issues/3670
Should be no actual *documentation* changes[^1], all added/modified lines in the doctests are hidden with `#`,
This PR splits the existing memory leaks in doctests in `core`, `alloc`, and `std` into two general categories:
1. "Non-focused" memory leaks that are incidental to the thing being documented, and/or are easy to remove, i.e. they are only there because preventing the leak would make the doctest less clear and/or concise.
- These doctests simply have a comment like `# // Prevent leaks for Miri.` above the added line that removes the memory leak.
- [^2]Some of these would perhaps be better as part of the public documentation part of the doctest, to clarify that a memory leak can happen if it is not otherwise mentioned explicitly in the documentation (specifically the ones in `(A)Rc::increment_strong_count(_in)`).
2. "Focused" memory leaks that are intentional and documented, and/or are possibly fragile to remove.
- These doctests have a `# // FIXME` comment above the line that removes the memory leak, with a note that once `-Zmiri-disable-leak-check` can be applied at test granularity, these tests should be "un-unleakified" and have `-Zmiri-disable-leak-check` enabled.
- Some of these are possibly fragile (e.g. unleaking the result of `Vec::leak`) and thus should definitely not be made part of the documentation.
This should be all of the leaks currently in `core` and `alloc`. I only found one leak in `std`, and it was in the first category (excluding the modules `@RalfJung` mentioned in https://github.com/rust-lang/rust/issues/126067 , and reducing the number of iterations of [one test](https://github.com/rust-lang/rust/blob/master/library/std/src/sync/once_lock.rs#L49-L94) from 1000 to 10)
[^1]: assuming [^2] is not added
[^2]: backlink
Don't check the capacity every time (and also for `Extend` for tuples, as this is how `unzip()` is implemented).
I did this with an unsafe method on `Extend` that doesn't check for growth (`extend_one_unchecked()`). I've marked it as perma-unstable currently, although we may want to expose it in the future so collections outside of std can benefit from it. Then specialize `Extend for (A, B)` for `TrustedLen` to call it.
It may seem that an alternative way of implementing this is to have a semi-public trait (`#[doc(hidden)]` public, so collections outside of core can implement it) for `extend()` inside tuples, and specialize it from collections. However, it is impossible due to limitations of `min_specialization`.
A concern that may arise with the current approach is that implementing `extend_one_unchecked()` correctly must also incur implementing `extend_reserve()`, otherwise you can have UB. This is a somewhat non-local safety invariant. However, I believe this is fine, since to have actual UB you must have unsafe code inside your `extend_one_unchecked()` that makes incorrect assumption, *and* not implement `extend_reserve()`. I've also documented this requirement.
In 126578 we ended up with more binary size increases than expected.
This change attempts to avoid inlining large things into small things, to avoid that kind of increase, in cases when top-down inlining will still be able to do that inlining later.
This is possible now that inline const blocks are stable; the idea was
even mentioned as an alternative when `uninit_array()` was added:
<https://github.com/rust-lang/rust/pull/65580#issuecomment-544200681>
> if it’s stabilized soon enough maybe it’s not worth having a
> standard library method that will be replaceable with
> `let buffer = [MaybeUninit::<T>::uninit(); $N];`
Const array repetition and inline const blocks are now stable (in the
next release), so that circumstance has come to pass, and we no longer
have reason to want `uninit_array()` other than convenience. Therefore,
let’s evaluate the inconvenience by not using `uninit_array()` in
the standard library, before potentially deleting it entirely.
Most modules have such a blank line, but some don't. Inserting the blank
line makes it clearer that the `//!` comments are describing the entire
module, rather than the `use` declaration(s) that immediately follows.
LLVM currently adds a redundant check for the returned option, in addition
to the `self.ptr != self.end` check when using the default
`Iterator::fold` method that calls `vec::IntoIter::next` in a loop.
Document overrides of `clone_from()` in core/std
As mentioned in https://github.com/rust-lang/rust/pull/96979#discussion_r1379502413
Specifically, when an override doesn't just forward to an inner type, document the behavior and that it's preferred over simply assigning a clone of source. Also, change instances where the second parameter is "other" to "source".
I reused some of the wording over and over for similar impls, but I'm not sure that the wording is actually *good*. Would appreciate feedback about that.
Also, now some of these seem to provide pretty specific guarantees about behavior (e.g. will reuse the exact same allocation iff the len is the same), but I was basing it off of the docs for [`Box::clone_from`](https://doc.rust-lang.org/1.75.0/std/boxed/struct.Box.html#method.clone_from-1) - I'm not sure if providing those strong guarantees is actually good or not.
Implement `Vec::pop_if`
This PR adds `Vec::pop_if` to the public API, behind the `vec_pop_if` feature.
```rust
impl<T> Vec<T> {
pub fn pop_if<F>(&mut self, f: F) -> Option<T>
where F: FnOnce(&mut T) -> bool;
}
```
Tracking issue: #122741
## Open questions
- [ ] Should the first unit test be split up?
- [ ] I don't see any guidance on ordering of methods in impl blocks, should I move the method elsewhere?