We already use `Instance` at declaration sites when available to glean
additional information about possible abstractions of the type in use.
This does the same when possible at callsites as well.
The primary purpose of this change is to allow CFI to alter how it
generates type information for indirect calls through `Virtual`
instances.
Let codegen decide when to `mem::swap` with immediates
Making `libcore` decide this is silly; the backend has so much better information about when it's a good idea.
Thus this PR introduces a new `typed_swap` intrinsic with a fallback body, and replaces that fallback implementation when swapping immediates or scalar pairs.
r? oli-obk
Replaces #111744, and means we'll never need more libs PRs like #111803 or #107140
The payload of coverage statements was historically a structure with several
fields, so it was boxed to avoid bloating `StatementKind`.
Now that the payload is a single relatively-small enum, we can replace
`Box<Coverage>` with just `CoverageKind`.
This patch also adds a size assertion for `StatementKind`, to avoid
accidentally bloating it in the future.
Remove `TypeAndMut` from `ty::RawPtr` variant, make it take `Ty` and `Mutability`
Pretty much mechanically converting `ty::RawPtr(ty::TypeAndMut { ty, mutbl })` to `ty::RawPtr(ty, mutbl)` and its fallout.
r? lcnr
cc rust-lang/types-team#124
"Handle" calls to upstream monomorphizations in compiler_builtins
This is pretty cooked, but I think it works.
compiler-builtins has a long-standing problem that at link time, its rlib cannot contain any calls to `core`. And yet, in codegen we _love_ inserting calls to symbols in `core`, generally from various panic entrypoints.
I intend this PR to attack that problem as completely as possible. When we generate a function call, we now check if we are generating a function call from `compiler_builtins` and whether the callee is a function which was not lowered in the current crate, meaning we will have to link to it.
If those conditions are met, actually generating the call is asking for a linker error. So we don't. If the callee diverges, we lower to an abort with the same behavior as `core::intrinsics::abort`. If the callee does not diverge, we produce an error. This means that compiler-builtins can contain panics, but they'll SIGILL instead of panicking. I made non-diverging calls a compile error because I'm guessing that they'd mostly get into compiler-builtins by someone making a mistake while working on the crate, and compile errors are better than linker errors. We could turn such calls into aborts as well if that's preferred.
This skips emitting extra arguments at every callsite (of which there
can be many). For a librustc_driver build with overflow checks enabled,
this cuts 0.7MB from the resulting binary.
Backend and target selection is a mess: the target can override the
backend (via `Target::default_codegen_backend`), *and* the backend can
override the target (via `CodegenBackend::target_override`).
The code that handles this is ugly. It calls `build_target_config`
twice, once before getting the backend and once again afterward. It also
must check that both overrides aren't triggering at the same time.
This commit removes the latter override. It's used in rust-gpu but
@eddyb said via Zulip that removing it would be ok. This simplifies the
code greatly, and will allow some nice follow-up refactorings.
LLD parses @ files like the command arguments on the platform it's on,
so on windows it needs to follow the MSVC style to work correctly.
Otherwise builds can fail if the linker command gets too long and the
build path contains spaces.
Fix ICE: `global_asm!()` Don't Panic When Unable to Evaluate Constant
Fixes#121099
A bit of an inelegant fix but given that the error is created only
after call to `const_eval_poly()` and that the calling function
cannot propagate the error anywhere else, the error has to be
explicitly handled inside `mono_item.rs`.
r? `@Amanieu`
Stabilize associated type bounds (RFC 2289)
This PR stabilizes associated type bounds, which were laid out in [RFC 2289]. This gives us a shorthand to express nested type bounds that would otherwise need to be expressed with nested `impl Trait` or broken into several `where` clauses.
### What are we stabilizing?
We're stabilizing the associated item bounds syntax, which allows us to put bounds in associated type position within other bounds, i.e. `T: Trait<Assoc: Bounds...>`. See [RFC 2289] for motivation.
In all position, the associated type bound syntax expands into a set of two (or more) bounds, and never anything else (see "How does this differ[...]" section for more info).
Associated type bounds are stabilized in four positions:
* **`where` clauses (and APIT)** - This is equivalent to breaking up the bound into two (or more) `where` clauses. For example, `where T: Trait<Assoc: Bound>` is equivalent to `where T: Trait, <T as Trait>::Assoc: Bound`.
* **Supertraits** - Similar to above, `trait CopyIterator: Iterator<Item: Copy> {}`. This is almost equivalent to breaking up the bound into two (or more) `where` clauses; however, the bound on the associated item is implied whenever the trait is used. See #112573/#112629.
* **Associated type item bounds** - This allows constraining the *nested* rigid projections that are associated with a trait's associated types. e.g. `trait Trait { type Assoc: Trait2<Assoc2: Copy>; }`.
* **opaque item bounds (RPIT, TAIT)** - This allows constraining associated types that are associated with the opaque without having to *name* the opaque. For example, `impl Iterator<Item: Copy>` defines an iterator whose item is `Copy` without having to actually name that item bound.
The latter three are not expressible in surface Rust (though for associated type item bounds, this will change in #120752, which I don't believe should block this PR), so this does represent a slight expansion of what can be expressed in trait bounds.
### How does this differ from the RFC?
Compared to the RFC, the current implementation *always* desugars associated type bounds to sets of `ty::Clause`s internally. Specifically, it does *not* introduce a position-dependent desugaring as laid out in [RFC 2289], and in particular:
* It does *not* desugar to anonymous associated items in associated type item bounds.
* It does *not* desugar to nested RPITs in RPIT bounds, nor nested TAITs in TAIT bounds.
This position-dependent desugaring laid out in the RFC existed simply to side-step limitations of the trait solver, which have mostly been fixed in #120584. The desugaring laid out in the RFC also added unnecessary complication to the design of the feature, and introduces its own limitations to, for example:
* Conditionally lowering to nested `impl Trait` in certain positions such as RPIT and TAIT means that we inherit the limitations of RPIT/TAIT, namely lack of support for higher-ranked opaque inference. See this code example: https://github.com/rust-lang/rust/pull/120752#issuecomment-1979412531.
* Introducing anonymous associated types makes traits no longer object safe, since anonymous associated types are not nameable, and all associated types must be named in `dyn` types.
This last point motivates why this PR is *not* stabilizing support for associated type bounds in `dyn` types, e.g, `dyn Assoc<Item: Bound>`. Why? Because `dyn` types need to have *concrete* types for all associated items, this would necessitate a distinct lowering for associated type bounds, which seems both complicated and unnecessary compared to just requiring the user to write `impl Trait` themselves. See #120719.
### Implementation history:
Limited to the significant behavioral changes and fixes and relevant PRs, ping me if I left something out--
* #57428
* #108063
* #110512
* #112629
* #120719
* #120584Closes#52662
[RFC 2289]: https://rust-lang.github.io/rfcs/2289-associated-type-bounds.html
A bit of an inelegant fix but given that the error is created only
after call to `const_eval_poly()` and that the calling function
cannot propagate the error anywhere else, the error has to be
explicitly handled inside `mono_item.rs`.
Remove fixme about LLVM basic block naming
~This may be a small perf win.~
Originally, this PR implemented the fixme, but it didn't have any measurable perf improvement.
r? ``@ghost``
Making `libcore` decide this is silly; the backend has so much better information about when it's a good idea.
So introduce a new `typed_swap` intrinsic with a fallback body, but replace that implementation for immediates and scalar pairs.
link.exe: Don't embed full path to PDB file in binary.
This PR makes `rustc` unconditionally pass `/PDBALTPATH:%_PDB%` to MSVC-style linkers, causing the linker to only embed the filename of the PDB in the binary instead of the full path. This will help implement the [trim-paths RFC](https://github.com/rust-lang/rust/issues/111540) for `*-msvc` targets.
Passing `/PDBALTPATH:%_PDB%` to the linker is already done by many projects that need reproducible builds and [debugger's should still be able to find the PDB](https://learn.microsoft.com/cpp/build/reference/pdbpath) if it is in the same directory as the binary.
r? `@ghost`
Fixes https://github.com/rust-lang/rust/issues/87825
Add `-Z external-clangrt`
This adds the unstable `-Z external-clangrt` flag that will prevent rustc from emitting linker paths for the in-tree LLVM sanitizer runtime library.
[AIX] Remove AixLinker's debuginfo() implementation
AIX ld's `-s` option doesn't perfectly fit` debuginfo()`'s semantics and may unexpectedly remove metadata in shared libraries. Remove the implementation of `AixLinker` and suggest user to use `strip` utility instead.
add test ensuring simd codegen checks don't run when a static assertion failed
stdarch relies on this to ensure that SIMD indices are in bounds.
I would love to know why this works, but I can't figure out where codegen decides to not codegen a function if a required-const does not evaluate. `@oli-obk` `@bjorn3` do you have any idea?
This adds the unstable `-Z external-sanitizer-runtime` flag that will
prevent rustc from emitting linker paths for the in-tree LLVM sanitizer
runtime library.
Avoid lowering code under dead SwitchInt targets
The objective of this PR is to detect and eliminate code which is guarded by an `if false`, even if that `false` is a constant which is not known until monomorphization, or is `intrinsics::debug_assertions()`.
The effect of this is that we generate no LLVM IR the standard library's unsafe preconditions, when they are compiled in a build where they should be immediately optimized out. This mono-time optimization ensures that builds which disable debug assertions do not grow a linkage requirement against `core`, which compiler-builtins currently needs: https://github.com/rust-lang/rust/issues/121552
This revives the codegen side of https://github.com/rust-lang/rust/pull/91222 as planned in https://github.com/rust-lang/rust/issues/120848.
Only generate a ptrtoint in AtomicPtr codegen when absolutely necessary
This special case was added in this PR: https://github.com/rust-lang/rust/pull/77611 in response to this error message:
```
Intrinsic has incorrect argument type!
void ({}*)* `@llvm.ppc.cfence.p0sl_s`
in function rust_oom
LLVM ERROR: Broken function found, compilation aborted!
[RUSTC-TIMING] std test:false 20.161
error: could not compile `std`
```
But when I tried searching for more information about that intrinsic I found this: https://github.com/llvm/llvm-project/issues/55983 which is a report of someone hitting this same error and a fix was landed in LLVM, 2 years after the above Rust PR.
Ensure nested allocations in statics neither get deduplicated nor duplicated
This PR generates new `DefId`s for nested allocations in static items and feeds all the right queries to make the compiler believe these are regular `static` items. I chose this design, because all other designs are fragile and make the compiler horribly complex for such a niche use case.
At present this wrecks incremental compilation performance *in case nested allocations exist* (because any query creating a `DefId` will be recomputed and never loaded from the cache). This will be resolved later in https://github.com/rust-lang/rust/pull/115613 . All other statics are unaffected by this change and will not have performance regressions (heh, famous last words)
This PR contains various smaller refactorings that can be pulled out into separate PRs. It is best reviewed commit-by-commit. The last commit is where the actual magic happens.
r? `@RalfJung` on the const interner and engine changes
fixes https://github.com/rust-lang/rust/issues/79738
Lower transmutes from int to pointer type as gep on null
I thought of this while looking at https://github.com/rust-lang/rust/pull/121242. See that PR's description for why this lowering is preferable.
The UI test that's being changed here crashes without changing the transmutes into casts. Based on that, this PR should not be merged without a crater build-and-test run.
Use ptradd for vtable indexing
Extension of #121665.
After this, the only remaining usages of GEP are [this](cd81f5b27e/compiler/rustc_codegen_llvm/src/intrinsic.rs (L909-L920)) kinda janky Emscription EH code, which I'll change in a future PR, and array indexing / pointer offsets, where there isn't yet a canonical `ptradd` form. (Out of curiosity I tried converting the latter to `ptradd(ptr, mul(size, index))`, but that causes codegen regressions right now.)
r? `@nikic`
std support for wasm32 panic=unwind
Tracking issue: #118168
This adds std support for `-Cpanic=unwind` on wasm, and with it slightly more fleshed out rustc support. Now, the stable default is still panic=abort without exception-handling, but if you `-Zbuild-std` with `RUSTFLAGS=-Cpanic=unwind`, you get wasm exception-handling try/catch blocks in the binary:
```rust
#[no_mangle]
pub fn foo_bar(x: bool) -> *mut u8 {
let s = Box::<str>::from("hello");
maybe_panic(x);
Box::into_raw(s).cast()
}
#[inline(never)]
#[no_mangle]
fn maybe_panic(x: bool) {
if x {
panic!("AAAAA");
}
}
```
```wat
;; snip...
(try $label$5
(do
(call $maybe_panic
(local.get $0)
)
(br $label$1)
)
(catch_all
(global.set $__stack_pointer
(local.get $1)
)
(call $__rust_dealloc
(local.get $2)
(i32.const 5)
(i32.const 1)
)
(rethrow $label$5)
)
)
;; snip...
```
LLVM Bitcode Linker: A self contained linker for nvptx and other targets
This PR introduces a new linker named `llvm-bitcode-linker`. It is a `self-contained` linker that can be used to link programs in `llbc` before optimizing and compiling to native code. It will first be used internally in the Rust compiler to enable tests for the `nvptx64-nvidia-cuda` target as the original `rust-ptx-linker` is deprecated. It will then be provided to users of the `nvptx64-nvidia-cuda` target with the purpose of linking ptx. More targets than nvptx will also be supported eventually.
The PR introduces a new unstable `LinkerFlavor` for the compiler. The compiler will also not be shipped with rustc but most likely instead be shipped in it's own unstable component (a follow up PR will be opened for this). This means that merging this PR should not add any stability guarantees.
When more details of `self-contained` is implemented it will only be possible to use the linker when `-Clink-self-contained=+linker` is passed.
<details>
<summary>Original Description</summary>
**When this PR was created it was focused a bit differently. The original text is preserved here in case there's some interests in it**
I have experimenting with approaches to replace the ptx-linker and enable the nvptx target tests again. I think it's time to get some feedback on the approach.
### The problem
The only useful linker for the nvptx target is [this crate](https://github.com/denzp/rust-ptx-linker). Since this linker performs linking on llvm bitcode it needs to track the llvm version of rustc and use the same format. It has not been maintained for 3+ years and must be considered abandoned. Over the years rust have upgraded LLVM while the linker has been left to bitrot. It is no longer in a usable state.
Due to the difficulty of keeping the ptx-linker up to date outside of tree the nvptx tests was [disabled a long time ago](f8f9a2869c). It was [previously discussed](https://github.com/rust-lang/rust/pull/96842#issuecomment-1146470177) if adding the ptx-linker to the rust repo would be a possibility. My efforts in doing this stopped at getting an answered if the license would prohibit it from inclusion in the [Rust repo](https://github.com/rust-lang/rust/pull/96842#issuecomment-1148397554). I therefore concluded that a re-write would be necessary.
### The possible solution presented here
The llvm tools know perfectly well how to link and optimize llvm bitcode. Each of them only perform a single task, and are therefore a bit cumbersome to call with the current linker approach rustc takes.
This PR adds a simple tool (current name `embedded-linker`) which can link self contained (often embedded) programs in llvm bitcode before compiling to the target format. Optimization will also be performed if lto is enabled. The rust compiler will make a single invocation to this tool, while the tool will orchestrate the many calls to the llvm tools.
### The questions
- Is having control over the nvptx linking and therefore also tests worth it to add such tool? or should the tool live outside the rust repo?
- Is the approach of calling llvm tools acceptable? Or would we want to keep the ptx-linker approach of using the llvm library? The tools seems to provide more simplicity and stability, but more intermediate files are being written. Perhaps there also are some performance penalty for the calling tools approach.
- What is the process for adding such tool? MCP?
- Does adding `llvm-link` to the llvm-tool component require any process?
- Does it require some sort of FCP to remove ptx-linker as the default linker for ptx? Or is it sufficient that using the upstream ptx-linker is broken in its current state. it is possible to use a somewhat patched version of ptx-linker.
</details>
Distinguish between library and lang UB in assert_unsafe_precondition
As described in https://github.com/rust-lang/rust/pull/121583#issuecomment-1963168186, `assert_unsafe_precondition` now explicitly distinguishes between language UB (conditions we explicitly optimize on) and library UB (things we document you shouldn't do, and maybe some library internals assume you don't do).
`debug_assert_nounwind` was originally added to avoid the "only at runtime" aspect of `assert_unsafe_precondition`. Since then the difference between the macros has gotten muddied. This totally revamps the situation.
Now _all_ preconditions shall be checked with `assert_unsafe_precondition`. If you have a precondition that's only checkable at runtime, do a `const_eval_select` hack, as done in this PR.
r? RalfJung
Fix misaligned loads when loading UEFI arg pointers
Currently, the two UEFI argument pointers are stored in an `alloca` of alignment 1, a pointer to which is then passed as `argv`. However, [the library code](9c3ad802d9/library/std/src/sys/pal/uefi/mod.rs (L60-L61)) treats `argv` as a pointer to an array of pointers and dereferences it as such, meaning that it presumes the `alloca` is aligned to at least the alignment of a pointer. This PR fixes this mismatch by aligning the `alloca` to the alignment of a pointer.
This PR also changed the `gep` to use the new `inbounds_ptradd` method.
Add asm goto support to `asm!`
Tracking issue: #119364
This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto).
Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary.
r? ``@Amanieu``
cc ``@ojeda``
Introduces the `arm64ec-pc-windows-msvc` target for building Arm64EC ("Emulation Compatible") binaries for Windows.
For more information about Arm64EC see <https://learn.microsoft.com/en-us/windows/arm/arm64ec>.
Tier 3 policy:
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I will be the maintainer for this target.
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
Target uses the `arm64ec` architecture to match LLVM and MSVC, and the `-pc-windows-msvc` suffix to indicate that it targets Windows via the MSVC environment.
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
Target name exactly specifies the type of code that will be produced.
> If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.
Done.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> The target must not introduce license incompatibilities.
Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Understood.
> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
Understood, I am not a member of the Rust team.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
Both `core` and `alloc` are supported.
Support for `std` dependends on making changes to the standard library, `stdarch` and `backtrace` which cannot be done yet as the bootstrapping compiler raises a warning ("unexpected `cfg` condition value") for `target_arch = "arm64ec"`.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Documentation is provided in src/doc/rustc/src/platform-support/arm64ec-pc-windows-msvc.md
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via @) to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
Understood.
cleanup: remove zero-offset GEP
This GEP would've been used to change the pointer type in the past, but after opaque pointers it's a no-op. I missed removing this in #105545.
Split out from #121577.
This always produces zero offset, regardless of what the struct layout
is.
Originally, this may have been necessary in order to change the pointer type,
but with opaque pointers, it is no longer necessary.
`-s` option doesn't perfectly fit into debuginfo()'s semantics and may unexpectedly
remove metadata in shared libraries. Remove the implementation and suggest user to
use `strip` utility instead.
Add a scheme for moving away from `extern "rust-intrinsic"` entirely
All `rust-intrinsic`s can become free functions now, either with a fallback body, or with a dummy body and an attribute, requiring backends to actually implement the intrinsic.
This PR demonstrates the dummy-body scheme with the `vtable_size` intrinsic.
cc https://github.com/rust-lang/rust/issues/63585
follow-up to #120500
MCP at https://github.com/rust-lang/compiler-team/issues/720
Existing names for values of this type are `sess`, `parse_sess`,
`parse_session`, and `ps`. `sess` is particularly annoying because
that's also used for `Session` values, which are often co-located, and
it can be difficult to know which type a value named `sess` refers to.
(That annoyance is the main motivation for this change.) `psess` is nice
and short, which is good for a name used this much.
The commit also renames some `parse_sess_created` values as
`psess_created`.
For the former, it's fine for `inbounds` offsets to be one-past-the-end,
so it's okay even if the ZST is the last field in the layout:
> The base pointer has an in bounds address of an allocated object,
> which means that it points into an allocated object, or to its end.
https://llvm.org/docs/LangRef.html#getelementptr-instruction
For the latter, even DST fields must always be inside the layout
(or to its end for ZSTs), so using inbounds is also fine there.
Adds initial support for DataFlowSanitizer to the Rust compiler. It
currently supports `-Zsanitizer-dataflow-abilist`. Additional options
for it can be passed to LLVM command line argument processor via LLVM
arguments using `llvm-args` codegen option (e.g.,
`-Cllvm-args=-dfsan-combine-pointer-labels-on-load=false`).
Add profiling support to AIX
AIX ld needs special option to merge objects with profiling. Also, profiler_builtins should include builtins for AIX from compiler-rt.
Add stubs in IR and ABI for `f16` and `f128`
This is the very first step toward the changes in https://github.com/rust-lang/rust/pull/114607 and the [`f16` and `f128` RFC](https://rust-lang.github.io/rfcs/3453-f16-and-f128.html). It adds the types to `rustc_type_ir::FloatTy` and `rustc_abi::Primitive`, and just propagates those out as `unimplemented!` stubs where necessary.
These types do not parse yet so there is no feature gate, and it should be okay to use `unimplemented!`.
The next steps will probably be AST support with parsing and the feature gate.
r? `@compiler-errors`
cc `@Nilstrieb` suggested breaking the PR up in https://github.com/rust-lang/rust/pull/120645#issuecomment-1925900572
rustc: Fix wasm64 metadata object files
It looks like LLD will detect object files being either 32 or 64-bit depending on any memory present. LLD will additionally reject 32-bit objects during a 64-bit link. Previously metadata objects did not have any memories in them which led LLD to conclude they were 32-bit objects which broke 64-bit targets for wasm.
This commit fixes this by ensuring that for 64-bit targets there's a memory object present to get LLD to detect it's a 64-bit target. Additionally this commit moves away from a hand-crafted wasm encoder to the `wasm-encoder` crate on crates.io as the complexity grows for the generated object file.
Closes#121460
Note the change of the `D` to `d`, to match all the other names that
have `Subdiag` in them, such as `SubdiagnosticMessage` and
`derive(Subdiagnostic)`.
Remove useless lifetime of ArchiveBuilder
`trait ArchiveBuilder<'a>` has a seemingly useless lifetime a, so I remove it. If this is intentional, please reject this PR.
```rust
pub trait ArchiveBuilder<'a> {
fn add_file(&mut self, path: &Path);
fn add_archive(
&mut self,
archive: &Path,
skip: Box<dyn FnMut(&str) -> bool + 'static>,
) -> io::Result<()>;
fn build(self: Box<Self>, output: &Path) -> bool;
}
```
It looks like LLD will detect object files being either 32 or 64-bit
depending on any memory present. LLD will additionally reject 32-bit
objects during a 64-bit link. Previously metadata objects did not have
any memories in them which led LLD to conclude they were 32-bit objects
which broke 64-bit targets for wasm.
This commit fixes this by ensuring that for 64-bit targets there's a
memory object present to get LLD to detect it's a 64-bit target.
Additionally this commit moves away from a hand-crafted wasm encoder to
the `wasm-encoder` crate on crates.io as the complexity grows for the
generated object file.
Closes#121460
Improve codegen diagnostic handling
Clarify the workings of the temporary `Diagnostic` type used to send diagnostics from codegen threads to the main thread.
r? `@estebank`
- Make it more closely match `rustc_errors::Diagnostic`, by making the
field names match, and adding `children`, which requires adding
`rustc_codegen_ssa:🔙:write::Subdiagnostic`.
- Check that we aren't missing important info when converting
diagnostics.
- Add better comments.
- Tweak `rustc_errors::Diagnostic::replace_args` so that we don't need
to do any cloning when converting diagnostics.
First, introduce a typedef `DiagnosticArgMap`.
Second, make the `args` field public, and remove the `args` getter and
`replace_args` setter. These were necessary previously because the getter
had a `#[allow(rustc::potential_query_instability)]` attribute, but that
was removed in #120931 when the args were changed from `FxHashMap` to
`FxIndexMap`. (All the other `Diagnostic` fields are public.)
Add "algebraic" fast-math intrinsics, based on fast-math ops that cannot return poison
Setting all of LLVM's fast-math flags makes our fast-math intrinsics very dangerous, because some inputs are UB. This set of flags permits common algebraic transformations, but according to the [LangRef](https://llvm.org/docs/LangRef.html#fastmath), only the flags `nnan` (no nans) and `ninf` (no infs) can produce poison.
And this uses the algebraic float ops to fix https://github.com/rust-lang/rust/issues/120720
cc `@orlp`
The goal of this commit is to remove warnings using LLVM tip-of-tree
`wasm-ld`. In llvm/llvm-project#78658 the `wasm-ld` LLD driver no longer
looks at archive indices and instead looks at all the objects in
archives. Previously `lib.rmeta` files were simply raw rustc metadata
bytes, not wasm objects, meaning that `wasm-ld` would emit a warning
indicating so.
WebAssembly targets previously passed `--fatal-warnings` to `wasm-ld` by
default which meant that if Rust were to update to LLVM 18 then all wasm
targets would not work. This immediate blocker was resolved in
rust-lang/rust#120278 which removed `--fatal-warnings` which enabled a
theoretical update to LLVM 18 for wasm targets. This current state is
ok-enough for now because rustc squashes all linker output by default if
it doesn't fail. This means, for example, that rustc squashes all the
linker warnings coming out of `wasm-ld` about `lib.rmeta` files with
LLVM 18. This again isn't a pressing issue because the information is
all hidden, but it runs the risk of being annoying if another linker
error were to happen and then the output would have all these unrelated
warnings that couldn't be fixed.
Thus, this PR comes into the picture. The goal of this PR is to resolve
these warnings by using the WebAssembly object file format on wasm
targets instead of using raw rustc metadata. When I first implemented
the rlib-in-objects scheme in #84449 I remember either concluding that
`wasm-ld` would either include the metadata in the output or I thought
we didn't have to do anything there at all. I think I was wrong on both
counts as `wasm-ld` does not include the metadata in the final output
unless the object is referenced and we do actually need to do something
to resolve these warnings.
This PR updates the object file format containing rustc metadata on
WebAssembly targets to be an actual WebAssembly file. This enables the
`wasm` feature of the `object` crate to be able to read the custom
section in the same manner as other platforms, but currently `object`
doesn't support writing wasm object files so a handwritten encoder is
used instead.
The only caveat I know of with this is that if `wasm-ld` does indeed
look at the object file then the metadata will be included in the final
output. I believe the only thing that could cause that at this time is
`--whole-archive` which I don't think is passed for rlibs. I would
clarify that I'm not 100% certain about this, however.
Overhaul `Diagnostic` and `DiagnosticBuilder`
Implements the first part of https://github.com/rust-lang/compiler-team/issues/722, which moves functionality and use away from `Diagnostic`, onto `DiagnosticBuilder`.
Likely follow-ups:
- Move things around, because this PR was written to minimize diff size, so some things end up in sub-optimal places. E.g. `DiagnosticBuilder` has impls in both `diagnostic.rs` and `diagnostic_builder.rs`.
- Rename `Diagnostic` as `DiagInner` and `DiagnosticBuilder` as `Diag`.
r? `@davidtwco`
Currently many diagnostic modifier methods are available on both
`Diagnostic` and `DiagnosticBuilder`. This commit removes most of them
from `Diagnostic`. To minimize the diff size, it keeps them within
`diagnostic.rs` but changes the surrounding `impl Diagnostic` block to
`impl DiagnosticBuilder`. (I intend to move things around later, to give
a more sensible code layout.)
`Diagnostic` keeps a few methods that it still needs, like `sub`,
`arg`, and `replace_args`.
The `forward!` macro, which defined two additional methods per call
(e.g. `note` and `with_note`), is replaced by the `with_fn!` macro,
which defines one additional method per call (e.g. `with_note`). It's
now also only used when necessary -- not all modifier methods currently
need a `with_*` form. (New ones can be easily added as necessary.)
All this also requires changing `trait AddToDiagnostic` so its methods
take `DiagnosticBuilder` instead of `Diagnostic`, which leads to many
mechanical changes. `SubdiagnosticMessageOp` gains a type parameter `G`.
There are three subdiagnostics -- `DelayedAtWithoutNewline`,
`DelayedAtWithNewline`, and `InvalidFlushedDelayedDiagnosticLevel` --
that are created within the diagnostics machinery and appended to
external diagnostics. These are handled at the `Diagnostic` level, which
means it's now hard to construct them via `derive(Diagnostic)`, so
instead we construct them by hand. This has no effect on what they look
like when printed.
There are lots of new `allow` markers for `untranslatable_diagnostics`
and `diagnostics_outside_of_impl`. This is because
`#[rustc_lint_diagnostics]` annotations were present on the `Diagnostic`
modifier methods, but missing from the `DiagnosticBuilder` modifier
methods. They're now present.
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
Turn the "no saved object file in work product" ICE into a translatable fatal error
I don't know if it's fair to say this fixes https://github.com/rust-lang/rust/issues/120854 but it surely makes the error reporting better and should encourage people with good instincts like ```@CinchBlue.```
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
All the other `emit`/`emit_diagnostic` methods were recently made
consuming (e.g. #119606), but this one wasn't. But it makes sense to.
Much of this is straightforward, and lots of `clone` calls are avoided.
There are a couple of tricky bits.
- `Emitter::primary_span_formatted` no longer takes a `Diagnostic` and
returns a pair. Instead it takes the two fields from `Diagnostic` that
it used (`span` and `suggestions`) as `&mut`, and modifies them. This
is necessary to avoid the cloning of `diag.children` in two emitters.
- `from_errors_diagnostic` is rearranged so various uses of `diag` occur
before the consuming `emit_diagnostic` call.
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
Remove unused/unnecessary features
~~The bulk of the actual code changes here is replacing try blocks with equivalent closures. I'm not entirely sure that's a good idea since it may have perf impact, happy to revert if that's the case/the change is unwanted.~~
I also removed a lot of `recursion_limit = "256"` since everything seems to build fine without that and most don't have any comment justifying it.
linker: Refactor library linking methods in `trait Linker`
Linkers are not aware of Rust libraries, they look like regular static or dynamic libraries to them, so Rust-specific methods in `trait Linker` do not make much sense.
They can be either removed or renamed to something more suitable.
Commits after the second one are cleanups.
Do not normalize closure signature when building `FnOnce` shim
It is not necessary to normalize the closure signature when building an `FnOnce` shim for an `Fn`/`FnMut` closure. That closure shim is just calling `FnMut::call_mut(&mut self)` anyways.
It's also somewhat sketchy that we were ever doing this to begin with, since we're normalizing with a `ParamEnv::reveal_all()` param-env, which is definitely not right with possibly polymorphic substs.
This cuts out a tiny bit of unnecessary work in `Instance::resolve` and simplifies the signature because now we can unconditionally return an `Instance`.
Pack u128 in the compiler to mitigate new alignment
This is based on #116672, adding a new `#[repr(packed(8))]` wrapper on `u128` to avoid changing any of the compiler's size assertions. This is needed in two places:
* `SwitchTargets`, otherwise its `SmallVec<[u128; 1]>` gets padded up to 32 bytes.
* `LitKind::Int`, so that entire `enum` can stay 24 bytes.
* This change definitely has far-reaching effects though, since it's public.
Rework how diagnostic lints are stored.
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
r? `@oli-obk`
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
Suggest Upgrading Compiler for Gated Features
This PR addresses #117318
I have a few questions:
1. Do we want to specify the current version and release date of the compiler? I have added this in via environment variables, which I found in the code for the rustc cli where it handles the `--version` flag
a. How can I handle the changing message in the tests?
3. Do we want to only show this message when the compiler is old?
a. How can we determine when the compiler is old?
I'll wait until we figure out the message to bless the tests
`is_force_warn` is only possible for diagnostics with `Level::Warning`,
but it is currently stored in `Diagnostic::code`, which every diagnostic
has.
This commit:
- removes the boolean `DiagnosticId::Lint::is_force_warn` field;
- adds a `ForceWarning` variant to `Level`.
Benefits:
- The common `Level::Warning` case now has no arguments, replacing
lots of `Warning(None)` occurrences.
- `rustc_session::lint::Level` and `rustc_errors::Level` are more
similar, both having `ForceWarning` and `Warning`.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
Improved support of collapse_debuginfo attribute for macros.
Added walk_chain_collapsed function to consider collapse_debuginfo attribute in parent macros in call chain.
Fixed collapse_debuginfo attribute processing for cranelift (there was if/else branches error swap).
cc https://github.com/rust-lang/rust/issues/100758
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Replace a number of FxHashMaps/Sets with stable-iteration-order alternatives
This PR replaces almost all of the remaining `FxHashMap`s in query results with either `FxIndexMap` or `UnordMap`. The only case that is missing is the `EffectiveVisibilities` struct which turned out to not be straightforward to transform. Once that is done too, we can remove the `HashStable` implementation from `HashMap`.
The first commit adds the `StableCompare` trait which is a companion trait to `StableOrd`. Some types like `Symbol` can be compared in a cross-session stable way, but their `Ord` implementation is not stable. In such cases, a `StableCompare` implementation can be provided to offer a lightweight way for stable sorting. The more heavyweight option is to sort via `ToStableHashKey`, but then sorting needs to have access to a stable hashing context and `ToStableHashKey` can also be expensive as in the case of `Symbol` where it has to allocate a `String`.
The rest of the commits are rather mechanical and don't overlap, so they are best reviewed individually.
Part of [MCP 533](https://github.com/rust-lang/compiler-team/issues/533).
Separate immediate and in-memory ScalarPair representation
Currently, we assume that ScalarPair is always represented using a two-element struct, both as an immediate value and when stored in memory.
This currently works fairly well, but runs into problems with https://github.com/rust-lang/rust/pull/116672, where a ScalarPair involving an i128 type can no longer be represented as a two-element struct in memory. For example, the tuple `(i32, i128)` needs to be represented in-memory as `{ i32, [3 x i32], i128 }` to satisfy alignment requirements. Using `{ i32, i128 }` instead will result in the second element being stored at the wrong offset (prior to LLVM 18).
Resolve this issue by no longer requiring that the immediate and in-memory type for ScalarPair are the same. The in-memory type will now look the same as for normal struct types (and will include padding filler and similar), while the immediate type stays a simple two-element struct type. This also means that booleans in immediate ScalarPair are now represented as i1 rather than i8, just like we do everywhere else.
The core change here is to llvm_type (which now treats ScalarPair as a normal struct) and immediate_llvm_type (which returns the two-element struct that llvm_type used to produce). The rest is fixing things up to no longer assume these are the same. In particular, this switches places that try to get pointers to the ScalarPair elements to use byte-geps instead of struct-geps.
Because it's redundant w.r.t. `Diagnostic::is_lint`, which is present
for every diagnostic level.
`struct_lint_level_impl` was the only place that set the `Error` field
to `true`, and it's also the only place that calls
`Diagnostic::is_lint()` to set the `is_lint` field.
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
This involves lots of breaking changes. There are two big changes that
force changes. The first is that the bitflag types now don't
automatically implement normal derive traits, so we need to derive them
manually.
Additionally, bitflags now have a hidden inner type by default, which
breaks our custom derives. The bitflags docs recommend using the impl
form in these cases, which I did.
Make closures carry their own ClosureKind
Right now, we use the "`movability`" field of `hir::Closure` to distinguish a closure and a coroutine. This is paired together with the `CoroutineKind`, which is located not in the `hir::Closure`, but the `hir::Body`. This is strange and redundant.
This PR introduces `ClosureKind` with two variants -- `Closure` and `Coroutine`, which is put into `hir::Closure`. The `CoroutineKind` is thus removed from `hir::Body`, and `Option<Movability>` no longer needs to be a stand-in for "is this a closure or a coroutine".
r? eholk
Split coroutine desugaring kind from source
What a coroutine is desugared from (gen/async gen/async) should be separate from where it comes (fn/block/closure).
There are only three. It's simpler to make the type
`DiagnosticBuilder<'_, ()>` from the start, no matter the level, than to
change the guarantee later.
Lots of vectors of messages called `message` or `msg`. This commit
pluralizes them.
Note that `emit_message_default` and `emit_messages_default` both
already existed, and both process a vector, so I renamed the former
`emit_messages_default_inner` because it's called by the latter.
rustc_codegen_ssa: Don't drop `IncorrectCguReuseType` , make `rustc_expected_cgu_reuse` attr work
In [100753], `IncorrectCguReuseType` accidentally stopped being emitted by removing `diag.span_err(...)`. Begin emitting it again rather than just blindly dropping it, and adjust tests accordingly.
We assume that there are no bugs and that the currently actual CGU reuse is correct. If there are bugs, they will be discovered and fixed eventually, and the tests will then be updated.
[100753]: 706452eba7 (diff-048389738ddcbe0f9765291a29db1fed9a5f03693d4781cfb5aaa97ffb3c7f84)Closes#118972
And make all hand-written `IntoDiagnostic` impls generic, by using
`DiagnosticBuilder::new(dcx, level, ...)` instead of e.g.
`dcx.struct_err(...)`.
This means the `create_*` functions are the source of the error level.
This change will let us remove `struct_diagnostic`.
Note: `#[rustc_lint_diagnostics]` is added to `DiagnosticBuilder::new`,
it's necessary to pass diagnostics tests now that it's used in
`into_diagnostic` functions.
[AIX] Fix XCOFF metadata
#118344 accidentally changed the way to get metadata from XCOFF file and broken our internal CI.
This PR reverts part of #118344 .
Currently, we assume that ScalarPair is always represented using
a two-element struct, both as an immediate value and when stored
in memory.
This currently works fairly well, but runs into problems with
https://github.com/rust-lang/rust/pull/116672, where a ScalarPair
involving an i128 type can no longer be represented as a two-element
struct in memory. For example, the tuple `(i32, i128)` needs to be
represented in-memory as `{ i32, [3 x i32], i128 }` to satisfy
alignment requirement. Using `{ i32, i128 }` instead will result in
the second element being stored at the wrong offset (prior to
LLVM 18).
Resolve this issue by no longer requiring that the immediate and
in-memory type for ScalarPair are the same. The in-memory type
will now look the same as for normal struct types (and will include
padding filler and similar), while the immediate type stays a
simple two-element struct type. This also means that booleans in
immediate ScalarPair are now represented as i1 rather than i8,
just like we do everywhere else.
The core change here is to llvm_type (which now treats ScalarPair
as a normal struct) and immediate_llvm_type (which returns the
two-element struct that llvm_type used to produce). The rest is
fixing things up to no longer assume these are the same. In
particular, this switches places that try to get pointers to the
ScalarPair elements to use byte-geps instead of struct-geps.
Add all known `target_feature` configs to check-cfg
This PR adds all the known `target_feature` from ~~`rustc_codegen_ssa`~~ `rustc_target` to the well known list of check-cfg.
It does so by moving the list from `rustc_codegen_ssa` to `rustc_target` ~~`rustc_session` (I not sure about this, but some of the moved function take a `Session`)~~, then using it the `fill_well_known` function.
This already proved to be useful since portable-simd had a bad cfg.
cc `@nnethercote` (since we discussed it in https://github.com/rust-lang/rust/pull/118494)
Currently, `emit_diagnostic` takes `&mut self`.
This commit changes it so `emit_diagnostic` takes `self` and the new
`emit_diagnostic_without_consuming` function takes `&mut self`.
I find the distinction useful. The former case is much more common, and
avoids a bunch of `mut` and `&mut` occurrences. We can also restrict the
latter with `pub(crate)` which is nice.
rustc_codegen_ssa: Remove trailing spaces in Display impl for CguReuse
Otherwise errors will look like this:
error: CGU-reuse for `cgu_invalidated_via_import-bar` is `PreLto ` but should be `PostLto `
### Background
I noticed that error messages looked wonky while investigating if
529047cfc3/compiler/rustc_codegen_ssa/src/assert_module_sources.rs (L281-L287)
should not be wrapped by `sess.emit_err(...)`. Right now it looks like the error is accidentally ignored. It looks like 706452eba7 might have accidentally started ignoring it (by removing the `diag.span_err()` call). I am still investigating, but regardless of the outcome we should fix the trailing whitespace.
codegen: panic when trying to compute size/align of extern type
The alignment is also computed when accessing a field of extern type at non-zero offset, so we also panic in that case.
Previously `size_of_val` worked because the code path there assumed that "thin pointer" means "sized". But that's not true any more with extern types. The returned size and align are just blatantly wrong, so it seems better to panic than returning wrong results. We use a non-unwinding panic since code probably does not expect size_of_val to panic.
Use a u64 for the rmeta root position
Waffle noticed this in https://github.com/rust-lang/rust/pull/117301#discussion_r1405410174
We've upgraded the other file offsets to u64, and this one only costs 4 bytes per file. Also the way the truncation was being done before was extremely easy to miss, I sure missed it! It's not clear to me if not having this change effectively made the other upgrades from u32 to u64 ineffective, but we can have it now.
r? `@WaffleLapkin`
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
update target feature following LLVM API change
LLVM commit e817966718 renamed* the `unaligned-scalar-mem` target feature to `fast-unaligned-access`.
(*) technically the commit folded two previous features into one, but there are no references to the other one in rust.
Add emulated TLS support
This is a reopen of https://github.com/rust-lang/rust/pull/96317 . many android devices still only use 128 pthread keys, so using emutls can be helpful.
Currently LLVM uses emutls by default for some targets (such as android, openbsd), but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated` to explicitly specify whether to generate emutls.
r? `@Amanieu`
Avoid adding builtin functions to `symbols.o`
We found performance regressions in #113923. The problem seems to be that `--gc-sections` does not remove these symbols. I tested that lld removes these symbols, but ld and gold do not.
I found that `used` adds symbols to `symbols.o` at 3e202ead60/compiler/rustc_codegen_ssa/src/back/linker.rs (L1786-L1791).
The PR removes builtin functions.
Note that under LTO, ld still preserves these symbols. (lld will still remove them.)
The first commit also fixes#118559. But I think the second commit also makes sense.
compile-time evaluation: detect writes through immutable pointers
This has two motivations:
- it unblocks https://github.com/rust-lang/rust/pull/116745 (and therefore takes a big step towards `const_mut_refs` stabilization), because we can now detect if the memory that we find in `const` can be interned as "immutable"
- it would detect the UB that was uncovered in https://github.com/rust-lang/rust/pull/117905, which was caused by accidental stabilization of `copy` functions in `const` that can only be called with UB
When UB is detected, we emit a future-compat warn-by-default lint. This is not a breaking change, so completely in line with [the const-UB RFC](https://rust-lang.github.io/rfcs/3016-const-ub.html), meaning we don't need t-lang FCP here. I made the lint immediately show up for dependencies since it is nearly impossible to even trigger this lint without `const_mut_refs` -- the accidentally stabilized `copy` functions are the only way this can happen, so the crates that popped up in #117905 are the only causes of such UB (in the code that crater covers), and the three cases of UB that we know about have all been fixed in their respective crates already.
The way this is implemented is by making use of the fact that our interpreter is already generic over the notion of provenance. For CTFE we now use the new `CtfeProvenance` type which is conceptually an `AllocId` plus a boolean `immutable` flag (but packed for a more efficient representation). This means we can mark a pointer as immutable when it is created as a shared reference. The flag will be propagated to all pointers derived from this one. We can then check the immutable flag on each write to reject writes through immutable pointers.
I just hope perf works out.
Currently LLVM uses emutls by default
for some targets (such as android, openbsd),
but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify
that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names
to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated`
to explicitly specify whether to generate emutls.
rustc: Harmonize `DefKind` and `DefPathData`
Follow up to https://github.com/rust-lang/rust/pull/118188.
`DefPathData::(ClosureExpr,ImplTrait)` are renamed to match `DefKind::(Closure,OpaqueTy)`.
`DefPathData::ImplTraitAssocTy` is replaced with `DefPathData::TypeNS(kw::Empty)` because both correspond to `DefKind::AssocTy`.
It's possible that introducing `(DefKind,DefPathData)::AssocOpaqueTy` instead could be a better solution, but that would be a much more invasive change.
Const generic parameters introduced for effects are moved from `DefPathData::TypeNS` to `DefPathData::ValueNS`, because constants are values.
`DefPathData` is no longer passed to `create_def` functions to avoid redundancy.
more targeted errors when extern types end up in places they should not
Cc https://github.com/rust-lang/rust/issues/115709 -- this does not fix that bug but it makes the panics less obscure and makes it more clear that this is a deeper issue than just a little codegen oversight. (In https://github.com/rust-lang/rust/pull/116115 we decided we'd stick to causing ICEs here for now, rather than nicer errors. We can't currently show any errors pre-mono and probably we don't want post-mono checks when this gets stabilized anyway.)
Report errors in jobserver inherited through environment variables
This pr attempts to catch situations, when jobserver exists, but is not being inherited.
r? `@petrochenkov`
`DefPathData::(ClosureExpr,ImplTrait)` are renamed to match `DefKind::(Closure,OpaqueTy)`.
`DefPathData::ImplTraitAssocTy` is replaced with `DefPathData::TypeNS(kw::Empty)` because both correspond to `DefKind::AssocTy`.
It's possible that introducing `(DefKind,DefPathData)::AssocOpaqueTy` could be a better solution, but that would be a much more invasive change.
Const generic parameters introduced for effects are moved from `DefPathData::TypeNS` to `DefPathData::ValueNS`, because constants are values.
`DefPathData` is no longer passed to `create_def` functions to avoid redundancy.
Restore `#![no_builtins]` crates participation in LTO.
After #113716, we can make `#![no_builtins]` crates participate in LTO again.
`#![no_builtins]` with LTO does not result in undefined references to the error. I believe this type of issue won't happen again.
Fixes#72140. Fixes#112245. Fixes#110606. Fixes#105734. Fixes#96486. Fixes#108853. Fixes#108893. Fixes#78744. Fixes#91158. Fixes https://github.com/rust-lang/cargo/issues/10118. Fixes https://github.com/rust-lang/compiler-builtins/issues/347.
The `nightly-2023-07-20` version does not always reproduce problems due to changes in compiler-builtins, core, and user code. That's why this issue recurs and disappears.
Some issues were not tested due to the difficulty of reproducing them.
r? pnkfelix
cc `@bjorn3` `@japaric` `@alexcrichton` `@Amanieu`
They're not used in `rustc_session`, and `rustc_metadata` is a more
obvious location.
`MetadataLoader` was originally put into `rustc_session` in #41565 to
avoid a dependency on LLVM, but things have changed a lot since then and
that's no longer relevant, e.g. `rustc_codegen_llvm` depends on
`rustc_metadata`.
Perform LTO optimisations with wasm-ld + -Clinker-plugin-lto
Fixes (partially) #60059. Technically, `--target wasm32-unknown-unknown -Clinker-plugin-lto` would complete without errors before, but it was not producing optimized code. At least, it may have been but it was probably not the opt-level people intended.
Similarly to #118377, this could benefit from a warning about using an explicit libLTO path with LLD, which will ignore it and use its internal LLVM. Especially given we always use lld on wasm targets. I left the code open to that possibility rather than making it perfectly neat.
Added linker_arg(s) Linker trait methods for link-arg to be prefixed "-Wl," for cc-like linker args and not verbatim
https://github.com/rust-lang/rust/issues/99427#issuecomment-1234443468
> here's one possible improvement to -l link-arg making it more portable between linkers and useful - befriending it with the verbatim modifier (https://github.com/rust-lang/rust/issues/99425).
>
> -l link-arg:-verbatim=-foo would add -Wl,-foo (or equivalent) when C compiler is used as a linker, and just -foo when bare linker is used.
> -l link-arg:+verbatim=-bar on the other hand would always pass just -bar.
Call FileEncoder::finish in rmeta encoding
Fixes https://github.com/rust-lang/rust/issues/117254
The bug here was that rmeta encoding never called FileEncoder::finish. Now it does. Most of the changes here are needed to support that, since rmeta encoding wants to finish _then_ access the File in the encoder, so finish can't move out.
I tried adding a `cfg(debug_assertions)` exploding Drop impl to FileEncoder that checked for finish being called before dropping, but fatal errors cause unwinding so this isn't really possible. If we encounter a fatal error with a dirty FileEncoder, the Drop impl ICEs even though the implementation is correct. If we try to paper over that by wrapping FileEncoder in ManuallyDrop then that just erases the fact that Drop automatically checks that we call finish on all paths.
I also changed the name of DepGraph::encode to DepGraph::finish_encoding, because that's what it does and it makes the fact that it is the path to FileEncoder::finish less confusing.
r? `@WaffleLapkin`
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Enable Rust to use the EHCont security feature of Windows
In the future Windows will enable Control-flow Enforcement Technology (CET aka Shadow Stacks). To protect the path where the context is updated during exception handling, the binary is required to enumerate valid unwind entrypoints in a dedicated section which is validated when the context is being set during exception handling.
The required support for EHCONT Guard has already been merged into LLVM, long ago. This change simply adds the Rust codegen option to enable it.
Relevant LLVM change: https://reviews.llvm.org/D40223
This also adds a new `ehcont-guard` option to the bootstrap config which enables EHCont Guard when building std.
We at Microsoft have been using this feature for a significant period of time; we are confident that the LLVM feature, when enabled, generates well-formed code.
We currently enable EHCONT using a codegen feature, but I'm certainly open to refactoring this to be a target feature instead, or to use any appropriate mechanism to enable it.
In the future Windows will enable Control-flow Enforcement Technology
(CET aka Shadow Stacks). To protect the path where the context is
updated during exception handling, the binary is required to enumerate
valid unwind entrypoints in a dedicated section which is validated when
the context is being set during exception handling.
The required support for EHCONT has already been merged into LLVM,
long ago. This change adds the Rust codegen option to enable it.
Reference:
* https://reviews.llvm.org/D40223
This also adds a new `ehcont-guard` option to the bootstrap config which
enables EHCont Guard when building std.
Rollup of 8 pull requests
Successful merges:
- #117828 (Avoid iterating over hashmaps in astconv)
- #117832 (interpret: simplify handling of shifts by no longer trying to handle signed and unsigned shift amounts in the same branch)
- #117891 (Recover `dyn` and `impl` after `for<...>`)
- #117957 (if available use a Child's pidfd for kill/wait)
- #117988 (Handle attempts to have multiple `cfg`d tail expressions)
- #117994 (Ignore but do not assume region obligations from unifying headers in negative coherence)
- #118000 (Make regionck care about placeholders in outlives components)
- #118068 (subtree update cg_gcc 2023/11/17)
r? `@ghost`
`@rustbot` modify labels: rollup
interpret: simplify handling of shifts by no longer trying to handle signed and unsigned shift amounts in the same branch
While we're at it, also update comments in codegen and MIR building related to shifts, and fix the overflow error printed by Miri on negative shift amounts.
Add arm64e-apple-ios & arm64e-apple-darwin targets
This introduces
* `arm64e-apple-ios`
* `arm64e-apple-darwin`
Rust targets for support `arm64e` architecture on `iOS` and `Darwin`.
So, this is a first approach for integrating to the Rust compiler.
## Tier 3 Target Policy
> * A tier 3 target must have a designated developer or developers (the "target
maintainers") on record to be CCed when issues arise regarding the target.
(The mechanism to track and CC such developers may evolve over time.)
I will be the target maintainer.
> * Targets must use naming consistent with any existing targets; for instance, a
target for the same CPU or OS as an existing Rust target should use the same
name for that CPU or OS. Targets should normally use the same names and
naming conventions as used elsewhere in the broader ecosystem beyond Rust
(such as in other toolchains), unless they have a very good reason to
diverge. Changing the name of a target can be highly disruptive, especially
once the target reaches a higher tier, so getting the name right is important
even for a tier 3 target.
Target names should not introduce undue confusion or ambiguity unless
absolutely necessary to maintain ecosystem compatibility. For example, if
the name of the target makes people extremely likely to form incorrect
beliefs about what it targets, the name should be changed or augmented to
disambiguate it.
If possible, use only letters, numbers, dashes and underscores for the name.
Periods (.) are known to cause issues in Cargo.
The target names `arm64e-apple-ios`, `arm64e-apple-darwin` were derived from `aarch64-apple-ios`, `aarch64-apple-darwin`.
In this [ticket,](#73628) people discussed the best suitable names for these targets.
> In some cases, the arm64e arch might be "different". For example:
> * `thread_set_state` might fail with (os/kern) protection failure if we try to call it from arm64 process to arm64e process.
> * The returning value of dlsym is PAC signed on arm64e, while left untouched on arm64
> * Some function like pthread_create_from_mach_thread requires a PAC signed function pointer on arm64e, which is not required on arm64.
So, I have chosen them because there are similar triplets in LLVM. I think there are no more suitable names for these targets.
> * Tier 3 targets may have unusual requirements to build or use, but must not
create legal issues or impose onerous legal terms for the Rust project or for
Rust developers or users.
The target must not introduce license incompatibilities.
Anything added to the Rust repository must be under the standard Rust
license (MIT OR Apache-2.0).
The target must not cause the Rust tools or libraries built for any other
host (even when supporting cross-compilation to the target) to depend
on any new dependency less permissive than the Rust licensing policy. This
applies whether the dependency is a Rust crate that would require adding
new license exceptions (as specified by the tidy tool in the
rust-lang/rust repository), or whether the dependency is a native library
or binary. In other words, the introduction of the target must not cause a
user installing or running a version of Rust or the Rust tools to be
subject to any new license requirements.
Compiling, linking, and emitting functional binaries, libraries, or other
code for the target (whether hosted on the target itself or cross-compiling
from another target) must not depend on proprietary (non-FOSS) libraries.
Host tools built for the target itself may depend on the ordinary runtime
libraries supplied by the platform and commonly used by other applications
built for the target, but those libraries must not be required for code
generation for the target; cross-compilation to the target must not require
such libraries at all. For instance, rustc built for the target may
depend on a common proprietary C runtime library or console output library,
but must not depend on a proprietary code generation library or code
optimization library. Rust's license permits such combinations, but the
Rust project has no interest in maintaining such combinations within the
scope of Rust itself, even at tier 3.
"onerous" here is an intentionally subjective term. At a minimum, "onerous"
legal/licensing terms include but are not limited to: non-disclosure
requirements, non-compete requirements, contributor license agreements
(CLAs) or equivalent, "non-commercial"/"research-only"/etc terms,
requirements conditional on the employer or employment of any particular
Rust developers, revocable terms, any requirements that create liability
for the Rust project or its developers or users, or any requirements that
adversely affect the livelihood or prospects of the Rust project or its
developers or users.
No dependencies were added to Rust.
> * Neither this policy nor any decisions made regarding targets shall create any
binding agreement or estoppel by any party. If any member of an approving
Rust team serves as one of the maintainers of a target, or has any legal or
employment requirement (explicit or implicit) that might affect their
decisions regarding a target, they must recuse themselves from any approval
decisions regarding the target's tier status, though they may otherwise
participate in discussions.
> * This requirement does not prevent part or all of this policy from being
cited in an explicit contract or work agreement (e.g. to implement or
maintain support for a target). This requirement exists to ensure that a
developer or team responsible for reviewing and approving a target does not
face any legal threats or obligations that would prevent them from freely
exercising their judgment in such approval, even if such judgment involves
subjective matters or goes beyond the letter of these requirements.
Understood.
I am not a member of a Rust team.
> * Tier 3 targets should attempt to implement as much of the standard libraries
as possible and appropriate (core for most targets, alloc for targets
that can support dynamic memory allocation, std for targets with an
operating system or equivalent layer of system-provided functionality), but
may leave some code unimplemented (either unavailable or stubbed out as
appropriate), whether because the target makes it impossible to implement or
challenging to implement. The authors of pull requests are not obligated to
avoid calling any portions of the standard library on the basis of a tier 3
target not implementing those portions.
Understood.
`std` is supported.
> * The target must provide documentation for the Rust community explaining how
to build for the target, using cross-compilation if possible. If the target
supports running binaries, or running tests (even if they do not pass), the
documentation must explain how to run such binaries or tests for the target,
using emulation if possible or dedicated hardware if necessary.
Building is described in the derived target doc.
> * Tier 3 targets must not impose burden on the authors of pull requests, or
other developers in the community, to maintain the target. In particular,
do not post comments (automated or manual) on a PR that derail or suggest a
block on the PR based on a tier 3 target. Do not send automated messages or
notifications (via any medium, including via `@)` to a PR author or others
involved with a PR regarding a tier 3 target, unless they have opted into
such messages.
> * Backlinks such as those generated by the issue/PR tracker when linking to
an issue or PR are not considered a violation of this policy, within
reason. However, such messages (even on a separate repository) must not
generate notifications to anyone involved with a PR who has not requested
such notifications.
Understood.
> * Patches adding or updating tier 3 targets must not break any existing tier 2
or tier 1 target, and must not knowingly break another tier 3 target without
approval of either the compiler team or the maintainers of the other tier 3
target.
> * In particular, this may come up when working on closely related targets,
such as variations of the same architecture with different features. Avoid
introducing unconditional uses of features that another variation of the
target may not have; use conditional compilation or runtime detection, as
appropriate, to let each target run code supported by that target.
These targets are not fully ABI compatible with arm64e code.
#73628
Remove asmjs
Fulfills [MCP 668](https://github.com/rust-lang/compiler-team/issues/668).
`asmjs-unknown-emscripten` does not work as-specified, and lacks essential upstream support for generating asm.js, so it should not exist at all.
generator layout: ignore fake borrows
fixes#117059
We emit fake shallow borrows in case the scrutinee place uses a `Deref` and there is a match guard. This is necessary to prevent the match guard from mutating the scrutinee: fab1054e17/compiler/rustc_mir_build/src/build/matches/mod.rs (L1250-L1265)
These fake borrows end up impacting the generator witness computation in `mir_generator_witnesses`, which causes the issue in #117059. This PR now completely ignores fake borrows during this computation. This is sound as thse are always removed after analysis and the actual computation of the generator layout happens afterwards.
Only the second commit impacts behavior, and could be backported by itself.
r? types
It was stabilized as `-C strip` in November 2021. The unstable option
was kept around as a temporary measure to ease the transition. Two years
is more than enough!
warn when using an unstable feature with -Ctarget-feature
Setting or unsetting the wrong target features can cause ABI incompatibility (https://github.com/rust-lang/rust/issues/116344, https://github.com/rust-lang/rust/issues/116558). We need to carefully audit features for their ABI impact before stabilization. I just learned that we currently accept arbitrary unstable features on stable and if they are in the list of Rust target features, even unstable, then we don't even warn about that!1 That doesn't seem great, so I propose we introduce a warning here.
This has an obvious loophole via `-Ctarget-cpu`. I'm not sure how to best deal with that, but it seems better to fix what we can and think about the other cases later, maybe once we have a better idea for how to resolve the general mess that are ABI-affecting target features.
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.
share some track_caller logic between interpret and codegen
Also move the code that implements the track_caller intrinsics out of the core interpreter engine -- it's just a helper creating a const-allocation, doesn't need to be part of the interpreter core.
Stabilize Ratified RISC-V Target Features
Stabilization PR for the ratified RISC-V target features. This stabilizes some of the target features tracked by #44839. This is also a part of #114544 and eventually needed for the RISC-V part of rust-lang/rfcs#3268.
There is a similar PR for the the stdarch crate which can be found at rust-lang/stdarch#1476.
This was briefly discussed on Zulip
(https://rust-lang.zulipchat.com/#narrow/stream/250483-t-compiler.2Frisc-v/topic/Stabilization.20of.20RISC-V.20Target.20Features/near/394793704).
Specifically, this PR stabilizes the:
* Atomic Instructions (A) on v2.0
* Compressed Instructions (C) on v2.0
* ~Double-Precision Floating-Point (D) on v2.2~
* ~Embedded Base (E) (Given as `RV32E` / `RV64E`) on v2.0~
* ~Single-Precision Floating-Point (F) on v2.2~
* Integer Multiplication and Division (M) on v2.0
* ~Vector Operations (V) on v1.0~
* Bit Manipulations (B) on v1.0 listed as `zba`, `zbc`, `zbs`
* Scalar Cryptography (Zk) v1.0.1 listed as `zk`, `zkn`, `zknd`, `zkne`, `zknh`, `zkr`, `zks`, `zksed`, `zksh`, `zkt`, `zbkb`, `zbkc` `zkbx`
* ~Double-Precision Floating-Point in Integer Register (Zdinx) on v1.0~
* ~Half-Precision Floating-Point (Zfh) on v1.0~
* ~Minimal Half-Precision Floating-Point (Zfhmin) on v1.0~
* ~Single-Precision Floating-Point in Integer Register (Zfinx) on v1.0~
* ~Half-Precision Floating-Point in Integer Register (Zhinx) on v1.0~
* ~Minimal Half-Precision Floating-Point in Integer Register (Zhinxmin) on v1.0~
r? `@Amanieu`
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
Rollup of 5 pull requests
Successful merges:
- #115773 (tvOS simulator support on Apple Silicon for rustc)
- #117162 (Remove `cfg_match` from the prelude)
- #117311 (-Zunpretty help: add missing possible values)
- #117316 (Mark constructor of `BinaryHeap` as const fn)
- #117319 (explain why we don't inline when target features differ)
r? `@ghost`
`@rustbot` modify labels: rollup
tvOS simulator support on Apple Silicon for rustc
Closes or is a subtask of #115692.
# Tier 3 Target Policy
At this tier, the Rust project provides no official support for a target, so we place minimal requirements on the introduction of targets.
> * A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
See [`src/doc/rustc/src/platform-support/apple-tvos.md`](4ab4d48ee5/src/doc/rustc/src/platform-support/apple-tvos.md)
> * Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
> * Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
> * If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.
This naming scheme matches `$ARCH-$VENDOR-$OS-$ABI` (I think `sim` is the ABI here) which is matches the iOS apple silicon simulator (`aarch64-apple-ios-sim`). [There is some discussion about renaming some apple simulator targets](https://github.com/rust-lang/rust/issues/115692#issuecomment-1712931910) to match the `-sim` suffix but that is outside the scope of this PR.
> * Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
>
> * The target must not introduce license incompatibilities.
> * Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
> * The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> * Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> * "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
This contribution is fully available under the standard Rust license with no additional legal restrictions whatsoever. This PR does not introduce any new dependency less permissive than the Rust license policy.
The new targets do not depend on proprietary libraries.
> * Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
This new target implements as much of the standard library as the other tvOS targets do.
> * The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
I have added the target to the other tvOS targets in [`src/doc/rustc/src/platform-support/apple-tvos.md`](4ab4d48ee5/src/doc/rustc/src/platform-support/apple-tvos.md)
> * Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> * This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
> * Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via ``@)`` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> * Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
> * Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> * In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
I acknowledge these requirements and intend to ensure that they are met.
This target does not touch any existing tier 2 or tier 1 targets and should not break any other targets.
Implement `gen` blocks in the 2024 edition
Coroutines tracking issue https://github.com/rust-lang/rust/issues/43122
`gen` block tracking issue https://github.com/rust-lang/rust/issues/117078
This PR implements `gen` blocks that implement `Iterator`. Most of the logic with `async` blocks is shared, and thus I renamed various types that were referring to `async` specifically.
An example usage of `gen` blocks is
```rust
fn foo() -> impl Iterator<Item = i32> {
gen {
yield 42;
for i in 5..18 {
if i.is_even() { continue }
yield i * 2;
}
}
}
```
The limitations (to be resolved) of the implementation are listed in the tracking issue
Allow target specs to use an LLD flavor, and self-contained linking components
This PR allows:
- target specs to use an LLD linker-flavor: this is needed to switch `x86_64-unknown-linux-gnu` to using LLD, and is currently not possible because the current flavor json serialization fails to roundtrip on the modern linker-flavors. This can e.g. be seen in https://github.com/rust-lang/rust/pull/115622#discussion_r1321312880 which explains where an `Lld::Yes` is ultimately deserialized into an `Lld::No`.
- target specs to declare self-contained linking components: this is needed to switch `x86_64-unknown-linux-gnu` to using `rust-lld`
- adds an end-to-end test of a custom target json simulating `x86_64-unknown-linux-gnu` being switched to using `rust-lld`
- disables codegen backends from participating because they don't support `-Zgcc-ld=lld` which is the basis of mcp510.
r? `@petrochenkov:` if the approach discussed https://github.com/rust-lang/rust/pull/115622#discussion_r1329403467 and on zulip would work for you: basically, see if we can emit only modern linker flavors in the json specs, but accept both old and new flavors while reading them, to fix the roundtrip issue.
The backwards compatible `LinkSelfContainedDefault` variants are still serialized and deserialized in `crt-objects-fallback`, while the spec equivalent of e.g. `-Clink-self-contained=+linker` is serialized into a different json object (with future-proofing to incorporate `crt-objects-fallback` in the future).
---
I've been test-driving this in https://github.com/rust-lang/rust/pull/113382 to test actually switching `x86_64-unknown-linux-gnu` to `rust-lld` (and fix what needs to be fixed in CI, bootstrap, etc), and it seems to work fine.
Mark .rmeta files as /SAFESEH on x86 Windows.
Chrome links .rlibs with /WHOLEARCHIVE or -Wl,--whole-archive to prevent the linker from discarding static initializers. This works well, except on Windows x86, where lld complains:
error: /safeseh: lib.rmeta is not compatible with SEH
The fix is simply to mark the .rmeta as SAFESEH aware. This is trivially true, since the metadata file does not contain any executable code.
Chrome links .rlibs with /WHOLEARCHIVE or -Wl,--whole-archive to prevent
the linker from discarding static initializers. This works well, except
on Windows x86, where lld complains:
error: /safeseh: lib.rmeta is not compatible with SEH
The fix is simply to mark the .rmeta as SAFESEH aware. This is trivially
true, since the metadata file does not contain any executable code.
Removes the backwards-compatible `LinkSelfContainedDefault`, by
incorporating the remaining specifics into `LinkSelfContained`.
Then renames the modern options to keep the old name.
Format all the let-chains in compiler crates
Since rust-lang/rustfmt#5910 has landed, soon we will have support for formatting let-chains (as soon as rustfmt syncs and beta gets bumped).
This PR applies the changes [from master rustfmt to rust-lang/rust eagerly](https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/out.20formatting.20of.20prs/near/374997516), so that the next beta bump does not have to deal with a 200+ file diff and can remain concerned with other things like `cfg(bootstrap)` -- #113637 was a pain to land, for example, because of let-else.
I will also add this commit to the ignore list after it has landed.
The commands that were run -- I'm not great at bash-foo, but this applies rustfmt to every compiler crate, and then reverts the two crates that should probably be formatted out-of-tree.
```
~/rustfmt $ ls -1d ~/rust/compiler/* | xargs -I@ cargo run --bin rustfmt -- `@/src/lib.rs` --config-path ~/rust --edition=2021 # format all of the compiler crates
~/rust $ git checkout HEAD -- compiler/rustc_codegen_{gcc,cranelift} # revert changes to cg-gcc and cg-clif
```
cc `@rust-lang/rustfmt`
r? `@WaffleLapkin` or `@Nilstrieb` who said they may be able to review this purely mechanical PR :>
cc `@Mark-Simulacrum` and `@petrochenkov,` who had some thoughts on the order of operations with big formatting changes in https://github.com/rust-lang/rust/pull/95262#issue-1178993801. I think the situation has changed since then, given that let-chains support exists on master rustfmt now, and I'm fairly confident that this formatting PR should land even if *bootstrap* rustfmt doesn't yet format let-chains in order to lessen the burden of the next beta bump.
After #113716, we can make `#![no_builtins]` crates participate in LTO again.
`#![no_builtins]` with LTO does not result in undefined references to the error.
linker: also pass debuginfo compression flags
We support compressing debuginfo during codegen, but until this patch we didn't pass the flag to the linker. Doing so means we'll respect the requested compression even when building binaries or dylibs. This produces much smaller binaries: in my testing a debug build of ripgrep goes from 85M to 32M, and the target/ directory (after a clean build in both cases) goes from 508M to 329M just by enabling zlib compression of debuginfo.
We support compressing debuginfo during codegen, but until this patch we
didn't pass the flag to the linker. Doing so means we'll respect the
requested compression even when building binaries or dylibs. This
produces much smaller binaries: in my testing a debug build of ripgrep
goes from 85M to 32M, and the target/ directory (after a clean build in
both cases) goes from 508M to 329M just by enabling zlib compression of
debuginfo.
Remove cgu_reuse_tracker from Session
This removes a bit of global mutable state.
It will now miss post-lto cgu reuse when ThinLTO determines that a cgu doesn't get changed, but there weren't any tests for this anyway and a test for it would be fragile to the exact implementation of ThinLTO in LLVM.
Implement `-Clink-self-contained=-linker` opt out
This implements the `-Clink-self-contained` opt out necessary to switch to lld by changing rustc's defaults instead of cargo's.
Components that are enabled and disabled on the CLI are recorded, for the purpose of being merged with the ones which the target spec will declare (I'll open another PR for that tomorrow, for easier review).
For MCP510, we now check whether using the self-contained linker is disabled on the CLI. Right now it would only be sensible to with `-Zgcc-ld=lld` (and I'll add some checks that we don't both enable and disable a component on the CLI in a future PR), but the goal is to simplify adding the check of the target's enabled components here in the follow-up PRs.
r? `@petrochenkov`
Generalize small dominators optimization
* Use small dominators optimization from 640ede7b0a more generally.
* Merge `DefLocation` and `LocationExtended` since they serve the same purpose.
stabilize combining +bundle and +whole-archive link modifiers
Per discussion on https://github.com/rust-lang/rust/issues/108081 combining +bundle and +whole-archive already works and can be stabilized independently of other aspects of the packed_bundled_libs feature. There is no risk of regression because this was not previously allowed.
r? `@petrochenkov`
subst -> instantiate
continues #110793, there are still quite a few uses of `subst` and `substitute`, but changing them all in the same PR was a bit too much, so I've stopped here for now.
Correct codegen of `ConstValue::Indirect` scalar and scalar pair
This concerns 3 tricky cases with `ConstValue::Indirect`:
- if we want a non-pointer scalar;
- if we have non-zero offset;
- if offset points to uninit memory => generate `poison` instead of an ICE. This case could happen in unreachable code, trying to extract a field from the wrong variant.
Those cases are not currently emitted by the compiler, but are exercised by https://github.com/rust-lang/rust/pull/116012.
Add Minimal Std implementation for UEFI
# Implemented modules:
1. alloc
2. os_str
3. env
4. math
# Related Links
Tracking Issue: https://github.com/rust-lang/rust/issues/100499
API Change Proposal: https://github.com/rust-lang/libs-team/issues/87
# Additional Information
This was originally part of https://github.com/rust-lang/rust/pull/100316. Since that PR was becoming too unwieldy and cluttered, and with suggestion from `@dvdhrm,` I have extracted a minimal std implementation to this PR.
The example in `src/doc/rustc/src/platform-support/unknown-uefi.md` has been tested for `x86_64-unknown-uefi` and `i686-unknown-uefi` in OVMF. It would be great if someone more familiar with AARCH64 can help with testing for that target.
Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
rename mir::Constant -> mir::ConstOperand, mir::ConstKind -> mir::Const
Also, be more consistent with the `to/eval_bits` methods... we had some that take a type and some that take a size, and then sometimes the one that takes a type is called `bits_for_ty`.
Turns out that `ty::Const`/`mir::ConstKind` carry their type with them, so we don't need to even pass the type to those `eval_bits` functions at all.
However this is not properly consistent yet: in `ty` we have most of the methods on `ty::Const`, but in `mir` we have them on `mir::ConstKind`. And indeed those two types are the ones that correspond to each other. So `mir::ConstantKind` should actually be renamed to `mir::Const`. But what to do with `mir::Constant`? It carries around a span, that's really more like a constant operand that appears as a MIR operand... it's more suited for `syntax.rs` than `consts.rs`, but the bigger question is, which name should it get if we want to align the `mir` and `ty` types? `ConstOperand`? `ConstOp`? `Literal`? It's not a literal but it has a field called `literal` so it would at least be consistently wrong-ish...
``@oli-obk`` any ideas?
move required_consts check to general post-mono-check function
This factors some code that is common between the interpreter and the codegen backends into shared helper functions. Also as a side-effect the interpreter now uses the same `eval` functions as everyone else to get the evaluated MIR constants.
Also this is in preparation for another post-mono check that will be needed for (the current hackfix for) https://github.com/rust-lang/rust/issues/115709: ensuring that all locals are dynamically sized.
I didn't expect this to change diagnostics, but it's just cycle errors that change.
r? `@oli-obk`
treat host effect params as erased in codegen
This fixes the changes brought to codegen tests when effect params are added to libcore, by not attempting to monomorphize functions that get the host param by being `const fn`.
r? `@oli-obk`
This fixes the changes brought to codegen tests when effect params are
added to libcore, by not attempting to monomorphize functions that get
the host param by being `const fn`.
Rework `no_coverage` to `coverage(off)`
As discussed at the tail of https://github.com/rust-lang/rust/issues/84605 this replaces the `no_coverage` attribute with a `coverage` attribute that takes sub-parameters (currently `off` and `on`) to control the coverage instrumentation.
Allows future-proofing for things like `coverage(off, reason="Tested live", issue="#12345")` or similar.
Use the same DISubprogram for each instance of the same inlined function within a caller
# Issue Details:
The call to `panic` within a function like `Option::unwrap` is translated to LLVM as a `tail call` (as it will never return), when multiple calls to the same function like this are inlined LLVM will notice the common `tail call` block (i.e., loading the same panic string + location info and then calling `panic`) and merge them together.
When merging these instructions together, LLVM will also attempt to merge the debug locations as well, but this fails (i.e., debug info is dropped) as Rust emits a new `DISubprogram` at each inline site thus LLVM doesn't recognize that these are actually the same function and so thinks that there isn't a common debug location.
As an example of this, consider the following program:
```rust
#[no_mangle]
fn add_numbers(x: &Option<i32>, y: &Option<i32>) -> i32 {
let x1 = x.unwrap();
let y1 = y.unwrap();
x1 + y1
}
```
When building for x86_64 Windows using 1.72 it generates (note the lack of `.cv_loc` before the call to `panic`, thus it will be attributed to the same line at the `addq` instruction):
```llvm
.cv_loc 0 1 3 0 # src\lib.rs:3:0
addq $40, %rsp
retq
leaq .Lalloc_f570dea0a53168780ce9a91e67646421(%rip), %rcx
leaq .Lalloc_629ace53b7e5b76aaa810d549cc84ea3(%rip), %r8
movl $43, %edx
callq _ZN4core9panicking5panic17h12e60b9063f6dee8E
int3
```
# Fix Details:
Cache the `DISubprogram` emitted for each inlined function instance within a caller so that this can be reused if that instance is encountered again.
Ideally, we would also deduplicate child scopes and variables, however my attempt to do that with #114643 resulted in asserts when building for Linux (#115156) which would require some deep changes to Rust to fix (#115455).
Instead, when using an inlined function as a debug scope, we will also create a new child scope such that subsequent child scopes and variables do not collide (from LLVM's perspective).
After this change the above assembly now (with <https://reviews.llvm.org/D159226> as well) shows the `panic!` was inlined from `unwrap` in `option.rs` at line 935 into the current function in `lib.rs` at line 0 (line 0 is emitted since it is ambiguous which line to use as there were two inline sites that lead to this same code):
```llvm
.cv_loc 0 1 3 0 # src\lib.rs:3:0
addq $40, %rsp
retq
.cv_inline_site_id 6 within 0 inlined_at 1 0 0
.cv_loc 6 2 935 0 # library\core\src\option.rs:935:0
leaq .Lalloc_5f55955de67e57c79064b537689facea(%rip), %rcx
leaq .Lalloc_e741d4de8cb5801e1fd7a6c6795c1559(%rip), %r8
movl $43, %edx
callq _ZN4core9panicking5panic17hde1558f32d5b1c04E
int3
```
Add CL and CMD into to pdb debug info
Partial fix for https://github.com/rust-lang/rust/issues/96475
The Arg0 and CommandLineArgs of the MCTargetOptions cpp class are not set within bb548f9645/compiler/rustc_llvm/llvm-wrapper/PassWrapper.cpp (L378)
This causes LLVM to not neither output any compiler path (cl) nor the arguments that were used when invoking it (cmd) in the PDB file.
This fix adds the missing information to the target machine so LLVM can use it.
Always add LC_BUILD_VERSION for metadata object files
As of Xcode 15 Apple's linker has become a bit more strict about the warnings it produces. One of those new warnings requires all valid Mach-O object files in an archive to have a LC_BUILD_VERSION load command:
```
ld: warning: no platform load command found in 'ARCHIVE[arm64][2106](lib.rmeta)', assuming: iOS-simulator
```
This was already being done for Mac Catalyst so this change expands this logic to include it for all Apple platforms. I filed this behavior change as FB12546320 and was told it was the new intentional behavior.