For review. Not sure about the link_attrs stuff. Will work on converting all the tests.
extern crate "foobar" as foo;
extern crate foobar as foo;
Implements remaining part of RFC #47.
Addresses issue #16461.
Removed link_attrs from rust.md, they don't appear to be supported by
the parser.
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
Implements remaining part of RFC #47.
Addresses issue #16461.
Removed link_attrs from rust.md, they don't appear to be supported by
the parser.
Changed all the tests to use the new extern crate syntax
Change pretty printer to use 'as' syntax
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
r? @nikomatsakis (or whoever)
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]
by-reference upvars.
This partially implements RFC 38. A snapshot will be needed to turn this
on, because stage0 cannot yet parse the keyword.
Part of #12381.
meaning `'b outlives 'a`. Syntax currently does nothing but is needed for full
fix to #5763. To use this syntax, the issue_5763_bootstrap feature guard is
required.
The `type_overflow` lint, doesn't catch the overflow for `i64` because
the overflow happens earlier in the parse phase when the `u64` as biggest
possible int gets casted to `i64` , without checking the for overflows.
We can't lint in the parse phase, so a refactoring of the `LitInt` type
was necessary.
The types `LitInt`, `LitUint` and `LitIntUnsuffixed` where merged to one
type `LitInt` which stores it's value as `u64`. An additional parameter was
added which indicate the signedness of the type and the sign of the value.
the CFG for match statements.
There were two bugs in issue #14684. One was simply that the borrow
check didn't know about the correct CFG for match statements: the
pattern must be a predecessor of the guard. This disallows the bad
behavior if there are bindings in the pattern. But it isn't enough to
prevent the memory safety problem, because of wildcards; thus, this
patch introduces a more restrictive rule, which disallows assignments
and mutable borrows inside guards outright.
I discussed this with Niko and we decided this was the best plan of
action.
This breaks code that performs mutable borrows in pattern guards. Most
commonly, the code looks like this:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz if self.f(...) => { ... }
_ => { ... }
}
}
}
Change this code to not use a guard. For example:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz => {
if self.f(...) {
...
} else {
...
}
}
_ => { ... }
}
}
}
Sometimes this can result in code duplication, but often it illustrates
a hidden memory safety problem.
Closes#14684.
[breaking-change]
This is done entirely in the libraries for functions up to 16 arguments.
A macro is used so that more arguments can be easily added if we need.
Note that I had to adjust the overloaded call algorithm to not try
calling the overloaded call operator if the callee is a built-in
function type, to prevent loops.
Closes#15448.
This eliminates the last vestige of the `~` syntax.
Instead of `~self`, write `self: Box<TypeOfSelf>`; instead of `mut
~self`, write `mut self: Box<TypeOfSelf>`, replacing `TypeOfSelf` with
the self-type parameter as specified in the implementation.
Closes#13885.
[breaking-change]
except where trait objects are involved.
Part of issue #15349, though I'm leaving it open for trait objects.
Cross borrowing for trait objects remains because it is needed until we
have DST.
This will break code like:
fn foo(x: &int) { ... }
let a = box 3i;
foo(a);
Change this code to:
fn foo(x: &int) { ... }
let a = box 3i;
foo(&*a);
[breaking-change]
This makes two changes to region inference: (1) it allows region
inference to relate early-bound regions; and (2) it allows regions to be
related before variance runs. The former is needed because there is no
relation between the two regions before region substitution happens,
while the latter is needed because type collection has to run before
variance. We assume that, before variance is inferred, that lifetimes
are invariant. This is a conservative overapproximation.
This relates to #13885. This does not remove `~self` from the language
yet, however.
[breaking-change]
This change propagates to many locations, but because of the
Macro Exterminator (or, more properly, the invariant that it
protects), macro invocations can't occur downstream of expansion.
This means that in librustc and librustdoc, extracting the
desired field can simply assume that it can't be a macro
invocation. Functions in ast_util abstract over this check.
Per discussion with @sfackler, refactored the expander to
change the way that exported macros are collected. Specifically,
a crate now contains a side table of spans that exported macros
go into.
This has two benefits. First, the encoder doesn't need to scan through
the expanded crate in order to discover exported macros. Second, the
expander can drop all expanded macros from the crate, with the pleasant
result that a fully expanded crate contains no macro invocations (which
include macro definitions).
Now, the lexer will categorize every byte in its input according to the
grammar. The parser skips over these while parsing, thus avoiding their
presence in the input to syntax extensions.
This removes a bunch of token types. Tokens now store the original, unaltered
numeric literal (that is still checked for correctness), which is parsed into
an actual number later, as needed, when creating the AST.
This can change how syntax extensions work, but otherwise poses no visible
changes.
[breaking-change]
This shuffles things around a bit so that LIT_CHAR and co store an Ident
which is the original, unaltered literal in the source. When creating the AST,
unescape and postprocess them.
This changes how syntax extensions can work, slightly, but otherwise poses no
visible changes. To get a useful value out of one of these tokens, call
`parse::{char_lit, byte_lit, bin_lit, str_lit}`
[breaking-change]
formerly, the self identifier was being discarded during parsing, which
stymies hygiene. The best fix here seems to be to attach a self identifier
to ExplicitSelf_, a change that rippled through the rest of the compiler,
but without any obvious damage.
This updates https://github.com/rust-lang/rust/pull/15075.
Rename `ToStr::to_str` to `ToString::to_string`. The naive renaming ends up with two `to_string` functions defined on strings in the prelude (the other defined via `collections::str::StrAllocating`). To remedy this I removed `StrAllocating::to_string`, making all conversions from `&str` to `String` go through `Show`. This has a measurable impact on the speed of this conversion, but the sense I get from others is that it's best to go ahead and unify `to_string` and address performance for all `to_string` conversions in `core::fmt`. `String::from_str(...)` still works as a manual fast-path.
Note that the patch was done with a script, and ended up renaming a number of other `*_to_str` functions, particularly inside of rustc. All the ones I saw looked correct, and I didn't notice any additional API breakage.
Closes#15046.
closes#13367
[breaking-change] Use `Sized?` to indicate a dynamically sized type parameter or trait (used to be `type`). E.g.,
```
trait Tr for Sized? {}
fn foo<Sized? X: Share>(x: X) {}
```
This was parsed by the parser but completely ignored; not even stored in
the AST!
This breaks code that looks like:
static X: &'static [u8] = &'static [1, 2, 3];
Change this code to the shorter:
static X: &'static [u8] = &[1, 2, 3];
Closes#15312.
[breaking-change]
Rationale: for what appear to be historical reasons only, the PatIdent contains
a Path rather than an Ident. This means that there are many places in the code
where an ident is artificially promoted to a path, and---much more problematically---
a bunch of elements from a path are simply thrown away, which seems like an invitation
to some really nasty bugs.
This commit replaces the Path in a PatIdent with a SpannedIdent, which just contains an ident
and a span.
This change starts denying `*T` in the parser. All code using `*T` should ensure
that the FFI call does indeed take `const T*` on the other side before renaming
the type to `*const T`.
Otherwise, all code can rename `*T` to `*const T`.
[breaking-change]
Unit-like structs are written as `struct Foo;`, but we erroneously
accepted `struct Foo();` and took it to mean the same thing. Now we
don't, so use the `struct Foo;` form!
[breaking-change]
The parser already has special logic for parsing `>` tokens from `>>`, and this
commit extends the logic to the acquiring a `>` from the `>=` and `>>=` tokens
as well.
Closes#15043
This removes all remnants of `@` pointers from rustc. Additionally, this removes
the `GC` structure from the prelude as it seems odd exporting an experimental
type in the prelude by default.
Closes#14193
[breaking-change]
RFC #27.
After a snapshot, the old syntax will be removed.
This can break some code that looked like `foo as &Trait:Send`. Now you
will need to write `foo as (&Trait+Send)`.
Closes#12778.
[breaking-change]
the leading quote part of the identifier for the purposes of hygiene.
This adopts @jbclements' solution to #14539.
I'm not sure if this is a breaking change or not.
Closes#12512.
[breaking-change]
* The select/plural methods from format strings are removed
* The # character no longer needs to be escaped
* The \-based escapes have been removed
* '{{' is now an escape for '{'
* '}}' is now an escape for '}'
Closes#14810
[breaking-change]
* The select/plural methods from format strings are removed
* The # character no longer needs to be escaped
* The \-based escapes have been removed
* '{{' is now an escape for '{'
* '}}' is now an escape for '}'
Closes#14810
[breaking-change]
The following features have been removed
* box [a, b, c]
* ~[a, b, c]
* box [a, ..N]
* ~[a, ..N]
* ~[T] (as a type)
* deprecated_owned_vector lint
All users of ~[T] should move to using Vec<T> instead.
This is part of the ongoing renaming of the equality traits. See #12517 for more
details. All code using Eq/Ord will temporarily need to move to Partial{Eq,Ord}
or the Total{Eq,Ord} traits. The Total traits will soon be renamed to {Eq,Ord}.
cc #12517
[breaking-change]
A number of functions/methods have been moved or renamed to align
better with rust standard conventions.
syntax::ext::mtwt::xorPush => xor_push
syntax::parse::parser::Parser => Parser::new
[breaking-change]
All of these features have been obsolete since February 2014, where most have
been obsolete since 2013. There shouldn't be any more need to keep around the
parser hacks after this length of time.
This is an implementation of RFC 16. A module can now only be loaded if the
module declaring `mod name;` "owns" the current directory. A module is
considered as owning its directory if it meets one of the following criteria:
* It is the top-level crate file
* It is a `mod.rs` file
* It was loaded via `#[path]`
* It was loaded via `include!`
* The module was declared via an inline `mod foo { ... }` statement
For example, this directory structure is now invalid
// lib.rs
mod foo;
// foo.rs
mod bar;
// bar.rs;
fn bar() {}
With this change `foo.rs` must be renamed to `foo/mod.rs`, and `bar.rs` must be
renamed to `foo/bar.rs`. This makes it clear that `bar` is a submodule of `foo`,
and can only be accessed through `foo`.
RFC: 0016-module-file-system-hierarchy
Closes#14180
[breaking-change]
* Added `// no-pretty-expanded` to pretty-print a test, but not run it through
the `expanded` variant.
* Removed #[deriving] and other expanded attributes after they are expanded
* Removed hacks around &str and &&str and friends (from both the parser and the
pretty printer).
* Un-ignored a bunch of tests
Previously, the parser would not allow you to simultaneously implement a
function with a different abi as well as being unsafe at the same time. This
extends the parser to allow functions of the form:
unsafe extern fn foo() {
// ...
}
The closure type grammar was also changed to reflect this reversal, types
previously written as "extern unsafe fn()" must now be written as
"unsafe extern fn()". The parser currently has a hack which allows the old
style, but this will go away once a snapshot has landed.
Closes#10025
[breaking-change]
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
r? @brson or @alexcrichton or whoever
for `~str`/`~[]`.
Note that `~self` still remains, since I forgot to add support for
`Box<self>` before the snapshot.
How to update your code:
* Instead of `~EXPR`, you should write `box EXPR`.
* Instead of `~TYPE`, you should write `Box<Type>`.
* Instead of `~PATTERN`, you should write `box PATTERN`.
[breaking-change]
Previously, the parser would not allow you to simultaneously implement a
function with a different abi as well as being unsafe at the same time. This
extends the parser to allow functions of the form:
unsafe extern fn foo() {
// ...
}
The closure type grammar was also changed to reflect this reversal, types
previously written as "extern unsafe fn()" must now be written as
"unsafe extern fn()". The parser currently has a hack which allows the old
style, but this will go away once a snapshot has landed.
Closes#10025
[breaking-change]
The outer attributes were manually appended when a module file was parsed, but
the attributes were also added higher up the stack of parsing (when the module
finished parsing). This removes the append in parsing the module file.
Closes#13826
This PR is primarily motivated by (and fixes) #12926.
We currently only have a span for the individual item itself and not for the referred contents. This normally does not cause a problem since both are located in the same file; it *is* possible that the contained statement or item is located in the other file (the syntax extension can do that), but even in that case the syntax extension should be located in the same file as the item. The module item (i.e. `mod foo;`) is the only exception here, and thus warrants a special treatment.
Rustdoc would now distinguish `mod foo;` from `mod foo {...}` by checking if the span for the module item and module contents is in different files. If it's the case, we'd prefer module contents over module item. There are alternative strategies, but as noted above we will have some corner cases if we don't record the contents span explicitly.
this is useful when the module item and module contents are defined
from different files (like rustdoc). in most cases the original span
for the module item would be used; in other cases, the span for
module contents is available separately at the `inner` field.
it reflected the obsolete syntax `use a, b, c;` and did not make
past the parser (though it was a non-fatal error so we can continue).
this legacy affected many portions of rustc and rustdoc as well,
so this commit cleans them up altogether.
Specifically, the method parameter cardinality mismatch or missing
method error message span now gets method itself exactly. It was the
whole expression.
Closes#9390Closes#13684Closes#13709
Specifically, the method parameter cardinality mismatch or missing
method error message span now gets method itself exactly. It was the
whole expression.
Closes#9390Closes#13684Closes#13709
When reporting "consider removing this semicolon" hint message, the
offending semicolon may come from macro call site instead of macro
itself. Using the more appropriate span makes the hint more helpful.
Closes#13428.
When reporting "consider removing this semicolon" hint message, the
offending semicolon may come from macro call site instead of macro
itself. Using the more appropriate span makes the hint more helpful.
Closes#13428.
This removes the `priv` keyword from the language and removes private enum
variants as a result. The remaining use cases of private enum variants were all
updated to be a struct with one private field that is a private enum.
RFC: 0006-remove-priv
Closes#13535
libstd: Implement `StrBuf`, a new string buffer type like `Vec`, and port all code over to use it.
Rebased & tests-fixed version of https://github.com/mozilla/rust/pull/13269
In summary these are some example transitions this change makes:
'a || => ||: 'a
proc:Send() => proc():Send
The intended syntax for closures is to put the lifetime bound not at the front
but rather in the list of bounds. Currently there is no official support in the
AST for bounds that are not 'static, so this case is currently specially handled
in the parser to desugar to what the AST is expecting. Additionally, this moves
the bounds on procedures to the correct position, which is after the argument
list.
The current grammar for closures and procedures is:
procedure := 'proc' [ '<' lifetime-list '>' ] '(' arg-list ')'
[ ':' bound-list ] [ '->' type ]
closure := [ 'unsafe' ] ['<' lifetime-list '>' ] '|' arg-list '|'
[ ':' bound-list ] [ '->' type ]
lifetime-list := lifetime | lifetime ',' lifetime-list
arg-list := ident ':' type | ident ':' type ',' arg-list
bound-list := bound | bound '+' bound-list
bound := path | lifetime
This does not currently handle the << ambiguity in `Option<<'a>||>`, I am
deferring that to a later patch. Additionally, this removes the support for the
obsolete syntaxes of ~fn and &fn.
Closes#10553Closes#10767Closes#11209Closes#11210Closes#11211
This change removes the AbiSet from the AST, converting all usage to have just
one Abi value. The current scheme selects a relevant ABI given a list of ABIs
based on the target architecture and how relevant each ABI is to that
architecture.
Instead of this mildly complicated scheme, only one ABI will be allowed in abi
strings, and pseudo-abis will be created for special cases as necessary. For
example the "system" abi exists for stdcall on win32 and C on win64.
Closes#10049