My PR #81478 used the wrong calling convention for a set of
functions that are called by the CRT. These functions need to use
`extern "C"`.
This would only affect x86, which is the only target (that I know of)
that has multiple calling conventions.
Edit multiple error code Markdown files
Makes small edits to several error code files. Fixes some missing punctuation. Changes some wording, grammar, and formatting for clarity and readability.
Adds a link to the rustup book in E0658.
Add a test for #71202Closes#71202
---
Note that the test normally generates this warning:
```
warning: cannot use constants which depend on generic parameters in types
--> test.rs:10:5
|
10 | / const ITEM_IS_COPY: [(); 1 - {
11 | | trait NotCopy {
12 | | const VALUE: bool = false;
13 | | }
... |
26 | | <IsCopy<T>>::VALUE
27 | | } as usize] = [];
| |_____________________^
|
= note: `#[warn(const_evaluatable_unchecked)]` on by default
= warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release!
= note: for more information, see issue #76200 <https://github.com/rust-lang/rust/issues/76200>
```
I added `allow(const_evaluatable_unchecked)`, but maybe we just don't want to add a test for this as the program is not really valid?
Don't link with --export-dynamic on wasm32-wasi
Remove --export-dynamic from the link arguments on the wasm32-wasi
target, as it emits spurious exports and increases code size.
Leave it in place for wasm32-unknown-unknown and
wasm32-unknown-emscripten. Even though it isn't a great solution
there, users are likely depending on its behavior there.
Remove const_in_array_repeat
Fixes#80371. Fixes#81315. Fixes#80767. Fixes#75682.
I thought there might be some issue with `Repeats(_, 0)`, but if you increase the items in the array it still ICEs. I'm not sure if this is the best fix but it does fix the given issue.
2229: Fix issues with move closures and mutability
This PR fixes two issues when feature `capture_disjoint_fields` is used.
1. Can't mutate using a mutable reference
2. Move closures try to move value out through a reference.
To do so, we
1. Compute the mutability of the capture and store it as part of the `CapturedPlace` that is written in TypeckResults
2. Restrict capture precision. Note this is temporary for now, to allow the feature to be used with move closures and ByValue captures and might change depending on discussions with the lang team.
- No Derefs are captured for ByValue captures, since that will result in value behind a reference getting moved.
- No projections are applied to raw pointers since these require unsafe blocks. We capture
them completely.
r? `````@nikomatsakis`````
Do not lint when range is completely included into another one
This fix has been developed following this [comment](https://github.com/rust-lang/rust-clippy/issues/5986#issuecomment-703313548).
So this will be linted:
```
|----------|
|-----------|
```
Now this won't be linted:
```
|---|
|--------------------|
```
and this will still lint:
```
|--------|
|--------------|
```
Fixes: #5986
changelog: Fix FPs in match_overlapping_arm, when first arm is completely included in second arm
When the LLVM backend is disabled, the llvm-project submodule is not
checked out by default. This breaks the bootstrap test for cg_clif. As
cg_clif doesn't support split debuginfo anyway llvm-dwp is not
necessary. Other backends would likely not want to build LLVM just for
llvm-dwp either.
This patch adds doc aliases for "delete". The added aliases are
supposed to reference usages `delete` in other programming
languages.
- `HashMap::remove`, `BTreeMap::remove` -> `Map#delete` and `delete`
keyword in JavaScript.
- `HashSet::remove`, `BTreeSet::remove` -> `Set#delete` in JavaScript.
- `mem::drop` -> `delete` keyword in C++.
- `fs::remove_file`, `fs::remove_dir`, `fs::remove_dir_all`
-> `File#delete` in Java, `File#delete` and `Dir#delete` in Ruby.
Before this change, searching for "delete" in documentation
returned no results.
Resolve DLL imports at CRT startup, not on demand
On Windows, libstd uses GetProcAddress to locate some DLL imports, so
that libstd can run on older versions of Windows. If a given DLL import
is not present, then libstd uses other behavior (such as fallback
implementations).
This commit uses a feature of the Windows CRT to do these DLL imports
during module initialization, before main() (or DllMain()) is called.
This is the ideal time to resolve imports, because the module is
effectively single-threaded at that point; no other threads can
touch the data or code of the module that is being initialized.
This avoids several problems. First, it makes the cost of performing
the DLL import lookups deterministic. Right now, the DLL imports are
done on demand, which means that application threads _might_ have to
do the DLL import during some time-sensitive operation. This is a
small source of unpredictability. Since threads can race, it's even
possible to have more than one thread running the same redundant
DLL lookup.
This commit also removes using the heap to allocate strings, during
the DLL lookups.
codegen: assume constants cannot fail to evaluate
https://github.com/rust-lang/rust/pull/80579 landed, so we can finally remove this old hack from codegen and instead assume that consts never fail to evaluate. :)
r? `@oli-obk`
Edit rustc_typeck top-level docs
Edit punctuation and wording in note on type variables vs. type parameters.
Also add missing punctuation and two inter-doc links.
Balance sidebar `Deref` cycle check with main content
The `Deref` cycle checks added as part of #80653 were "unbalanced" in the sense
that the main content code path checks for cycles _before_ descending, while the
sidebar checks _after_. Checking _before_ is correct, so this changes the
sidebar path to match the main content path.
Fixes#81395
r? ```@GuillaumeGomez```
Optimize decimal formatting of 128-bit integers
## Description
This PR optimizes the `udivmod_1e19` function, which is used for formatting 128-bit integers, based on the algorithm provided in \[1\]. This optimization improves performance of formatting 128-bit integers, especially on 64-bit architectures. It also slightly reduces the output binary size.
## Assembler comparison
https://godbolt.org/z/YrG5zY
## Performance
#### previous results
```
test fmt::write_u128_max ... bench: 552 ns/iter (+/- 4)
test fmt::write_u128_min ... bench: 125 ns/iter (+/- 2)
```
#### new results
```
test fmt::write_u128_max ... bench: 205 ns/iter (+/- 13)
test fmt::write_u128_min ... bench: 129 ns/iter (+/- 5)
```
## Reference
\[1\] T. Granlund and P. Montgomery, “Division by Invariant Integers Using Multiplication” in Proc. of the SIGPLAN94 Conference on Programming Language Design and Implementation, 1994, pp. 61–72
Clone entire `TokenCursor` when collecting tokens
Reverts PR #80830Fixestaiki-e/pin-project#312
We can have an arbitrary number of `None`-delimited group frames pushed
on the stack due to proc-macro invocations, which can legally be exited.
Attempting to account for this would add a lot of complexity for a tiny
performance gain, so let's just use the original strategy.
Remove requirement that forces symmetric and transitive PartialEq impls to exist
### Counterexample of symmetry:
If you [have](https://docs.rs/proc-macro2/1.0.24/proc_macro2/struct.Ident.html#impl-PartialEq%3CT%3E) an impl like:
```rust
impl<T> PartialEq<T> for Ident
where
T: ?Sized + AsRef<str>
```
then Rust will not even allow the symmetric impl to exist.
```console
error[E0210]: type parameter `T` must be covered by another type when it appears before the first local type (`Ident`)
--> src/main.rs:9:6
|
9 | impl<T> PartialEq<Ident> for T where T: ?Sized + AsRef<str> {
| ^ type parameter `T` must be covered by another type when it appears before the first local type (`Ident`)
|
= note: implementing a foreign trait is only possible if at least one of the types for which it is implemented is local, and no uncovered type parameters appear before that first local type
= note: in this case, 'before' refers to the following order: `impl<..> ForeignTrait<T1, ..., Tn> for T0`, where `T0` is the first and `Tn` is the last
```
<br>
### Counterexample of transitivity:
Consider these two existing impls from `regex` and `clap`:
```rust
// regex
/// An inline representation of `Option<char>`.
pub struct Char(u32);
impl PartialEq<char> for Char {
fn eq(&self, other: &char) -> bool {
self.0 == *other as u32
}
}
```
```rust
// clap
pub(crate) enum KeyType {
Short(char),
Long(OsString),
Position(u64),
}
impl PartialEq<char> for KeyType {
fn eq(&self, rhs: &char) -> bool {
match self {
KeyType::Short(c) => c == rhs,
_ => false,
}
}
}
```
It's nice to be able to add `PartialEq<proc_macro::Punct> for char` in libproc_macro (https://github.com/rust-lang/rust/pull/80595), but it makes no sense to force an `impl PartialEq<Punct> for Char` and `impl PartialEq<Punct> for KeyType` in `regex` and `clap` in code that otherwise has nothing to do with proc macros.
<br>
`@rust-lang/libs`