Mention the syntax for `use` on `mod foo;` if `foo` doesn't exist
Newcomers might get confused that `mod` is the only way of defining scopes, and that it can be used as if it were `use`.
Fix#69492.
Lint `non_exhaustive_omitted_patterns` by columns
This is a rework of the `non_exhaustive_omitted_patterns` lint to make it more consistent. The intent of the lint is to help consumers of `non_exhaustive` enums ensure they stay up-to-date with all upstream variants. This rewrite fixes two cases we didn't handle well before:
First, because of details of exhaustiveness checking, the following wouldn't lint `Enum::C` as missing:
```rust
match Some(x) {
Some(Enum::A) => {}
Some(Enum::B) => {}
_ => {}
}
```
Second, because of the fundamental workings of exhaustiveness checking, the following would treat the `true` and `false` cases separately and thus lint about missing variants:
```rust
match (true, x) {
(true, Enum::A) => {}
(true, Enum::B) => {}
(false, Enum::C) => {}
_ => {}
}
```
Moreover, it would correctly not lint in the case where the pair is flipped, because of asymmetry in how exhaustiveness checking proceeds.
A drawback is that it no longer makes sense to set the lint level per-arm. This will silently break the lint for current users of it (but it's behind a feature gate so that's ok).
The new approach is now independent of the exhaustiveness algorithm; it's a separate pass that looks at patterns column by column. This is another of the motivations for this: I'm glad to move it out of the algorithm, it was akward there.
This PR is almost identical to https://github.com/rust-lang/rust/pull/111651. cc `@eholk` who reviewed it at the time. Compared to then, I'm more confident this is the right approach.
Previously, any associated function could have `~const` trait bounds on
generic parameters, which could lead to ICEs when these bounds were used
on associated functions of non-`#[const_trait] trait` or
non-`impl const` blocks.
Includes changes as per @fee1-dead's comments in #116210.
Rollup of 6 pull requests
Successful merges:
- #115770 (Match on elem first while building move paths)
- #115999 (Capture scrutinee of if let guards correctly)
- #116056 (Make unsized casts illegal)
- #116061 (Remove TaKO8Ki from review rotation)
- #116062 (Change `start` to `#[start]` in some diagnosis)
- #116067 (Open the FileEncoder file for reading and writing)
r? `@ghost`
`@rustbot` modify labels: rollup
[breaking change] Validate crate name in `--extern` [MCP 650]
Reject non-ASCII-identifier crate names passed to the CLI option `--extern` (`rustc`, `rustdoc`).
Implements [MCP 650](https://github.com/rust-lang/compiler-team/issues/650) (except that we only allow ASCII identifiers not arbitrary Rust identifiers).
Fixes#113035.
[As mentioned on Zulip](https://rust-lang.zulipchat.com/#narrow/stream/233931-t-compiler.2Fmajor-changes/topic/Disallow.20non-identifier-valid.20--extern.20cr.E2.80.A6.20compiler-team.23650/near/376826988), doing a crater run probably doesn't make sense since it wouldn't yield anything. Most users don't interact with `rustc` directly but only ever through Cargo which always passes a valid crate name to `--extern` when it invokes `rustc` and `rustdoc`. In any case, the user wouldn't be able to use such a crate name in the source code anyway.
Note that I'm not using [`rustc_session::output::validate_crate_name`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_session/output/fn.validate_crate_name.html) (used for `--crate-name` and `#![crate_name]`) since the latter doesn't reject non-ASCII crate names and ones that start with a digit.
As an aside, I've also thought about getting rid of `validate_crate_name` entirely in a separate PR (with another MCP) in favor of `is_ascii_ident` to reject more weird `--crate-name`s, `#![crate_name]`s and file names but I think that would lead to a lot of actual breakage, namely because of file names starting with a digit. In `tests/ui` 9 tests would be impacted for example.
CC `@estebank`
r? `@est31`
Fallback effects even if types also fallback
`||` is short circuiting, so if we do ty/int var fallback, we *don't* do effect fallback 😸
r? `@fee1-dead` or `@oli-obk`
Fixes#115791Fixes#115842
Improve invalid let expression handling
- Move all of the checks for valid let expression positions to parsing.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a valid location.
- Suppress some later errors and MIR construction for invalid let expressions.
- Fix a (drop) scope issue that was also responsible for #104172.
Fixes#104172Fixes#104868
- Add doc comment to new type
- Restore "only supported directly in conditions of `if` and `while` expressions" note
- Rename variant with clearer name
Previously some invalid let expressions would result in both a feature
error and a parsing error. Avoid this and ensure that we only emit the
parsing error when this happens.
There was an incomplete version of the check in parsing and a second
version in AST validation. This meant that some, but not all, invalid
uses were allowed inside macros/disabled cfgs. It also means that later
passes have a hard time knowing when the let expression is in a valid
location, sometimes causing ICEs.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a
valid location.
- Suppress later errors and MIR construction for invalid let
expressions.
Lower `Or` pattern without allocating place
cc `@azizghuloum` `@cjgillot`
Related to #111583 and #111644
While reviewing #111644, it occurs to me that while we directly lower conjunctive predicates, which are connected with `&&`, into the desirable control flow, today we don't directly lower the disjunctive predicates, which are connected with `||`, in the similar fashion. Instead, we allocate a place for the boolean temporary to hold the result of evaluating the `||` expression.
Usually I would expect optimization at later stages to "inline" the evaluation of boolean predicates into simple CFG, but #111583 is an example where `&&` is failing to be optimized away and the assembly shows that both the expensive operands are evaluated. Therefore, I would like to make a small change to make the CFG a bit more straight-forward without invoking the `as_temp` machinery, and plus avoid allocating the place to hold the boolean result as well.
On the following example, point at `String` instead of the whole type:
```
error[E0277]: the trait bound `String: Copy` is not satisfied
--> $DIR/own-bound-span.rs:14:24
|
LL | let _: <S as D>::P<String>;
| ^^^^^^ the trait `Copy` is not implemented for `String`
|
note: required by a bound in `D::P`
--> $DIR/own-bound-span.rs:4:15
|
LL | type P<T: Copy>;
| ^^^^ required by this bound in `D::P`
```