Fix `tidy --bless` on ̶X̶e̶n̶i̶x̶ Windows
As reported in https://github.com/rust-lang/rust/pull/120628#issuecomment-1973655740 the requested `tidy --bless` implementation didn't take into account the fact that earlier the linting code canonicalized things to use the OS path separator. This makes it so that the path separator is always rewritten back as '/', which should fix the variance there.
r? ``@ChrisDenton``
Don't require specifying unrelated assoc types when trait alias is in `dyn` type
Object types must specify the associated types for all of the principal trait ref's supertraits. However, we weren't doing elaboration properly, so we incorrectly errored with erroneous suggestions to specify associated types that were unrelated to that principal trait ref. To fix this, use proper supertrait elaboration when expanding trait aliases in `conv_object_ty_poly_trait_ref`.
**NOTE**: Please use the ignore-whitespace option when reviewing. This only touches a handful of lines.
r? oli-obk or please feel free to reassign.
Fixes#122118
Make not finding core a fatal error
Similar to https://github.com/rust-lang/rust/pull/120472, this prevents terminal spam. In particular, it makes the good diagnostic visible when you try to use a target that's not installed.
Apply `EarlyBinder` only to `TraitRef` in `ImplTraitHeader`
Resolves#121852
This PR
1. Moves `EarlyBinder` to `TraitRef` inside `ImplTraitHeader`,
2. Changes visibility of `coherence::builtin::check_trait` to `pub(super)` from `pub` as it seems not being re-exported from the `coherence` module.
silence mismatched types errors for implied projections
Currently, if a trait bound is not satisfied, then we suppress any errors for the trait's supertraits not being satisfied, but still report errors for super projections not being satisfied.
For example:
```rust
trait Super {
type Assoc;
}
trait Sub: Super<Assoc = ()> {}
```
Before this PR, if `T: Sub` is not satisfied, then errors for `T: Super` are suppressed, but errors for `<T as Super>::Assoc == ()` are still shown. This PR makes it so that errors about super projections not being satisfied are also suppressed.
The errors are only suppressed if the span of the trait obligation matches the span of the super predicate obligation to avoid silencing error that are not related. This PR removes some differences between the spans of supertraits and super projections to make the suppression work correctly.
This PR fixes the majority of the diagnostics fallout when making `Thin` a supertrait of `Sized` (in a future PR).
cc https://github.com/rust-lang/rust/pull/120354#issuecomment-1930585382
cc `@lcnr`
Don't lint `redundant_field_names` across macro boundaries
Fixes#12426
The `field.span.eq_ctxt(field.ident.span)` addition is the relevant line for the bugfix
The current implementation checks that the field's name and the path are in the same context by comparing the idents, but not that the two are in the same context as the entire field itself, so in local macros `SomeStruct { $ident: $ident }` would get linted
changelog: none
interpret: avoid a long-lived PlaceTy in stack frames
`PlaceTy` uses a representation that's not very stable under changes to the stack. I'd feel better if we didn't have one in the long-term machine state.
r? `@oli-obk`
This method would previously take a target scope, and then verify that it
was equal to the scope on top of the if-then scope stack.
In practice, this means that callers have to go out of their way to pass around
redundant scope information that's already on the if-then stack.
So it's easier to just retrieve the correct scope directly from the if-then
stack, and simplify the other code that was passing it around.
Merge `check_mod_impl_wf` and `check_mod_type_wf`
This still causes some funny diagnostics, but I'm not sure they can be fixed without a larger change, which I'd like to avoid here.
Reducing the number of times we iterate over the same items at this high level helps avoid parallel-compiler bottlenecks.
Update cargo
14 commits in f772ec0224d3755ce52ac5128a80319fb2eb45d0..a4c63fe5388beaa09e5f91196c86addab0a03580
2024-03-01 22:57:35 +0000 to 2024-03-06 22:15:17 +0000
- fix(cli): Skip tracing-chrome for platforms without 64bit atomics (rust-lang/cargo#13551)
- chore: downgrade to openssl v1.1.1 (again) (rust-lang/cargo#13550)
- fix(cli): Add traces to clarify where time is going (rust-lang/cargo#13545)
- fix(rustdoc-map): dedup `--extern-html-too-url` for same unit (rust-lang/cargo#13544)
- test: Add test for packaging a public dependency (rust-lang/cargo#13536)
- doc: Edits for git/path dependency sections (rust-lang/cargo#13341)
- feat(cli): Allow logging to chrome traces (rust-lang/cargo#13399)
- fix(log): Trace parameters to align with profile (rust-lang/cargo#13538)
- fix(toml): Don't warn on unset Edition if only 2015 is compatible (rust-lang/cargo#13533)
- fix(cli): Trace core cargo operations (rust-lang/cargo#13532)
- chore: update pulldown-cmark to 0.10.0 (rust-lang/cargo#13517)
- feat(add): Fallback to `rustc -v` when no MSRV is set (rust-lang/cargo#13516)
- chore(ci): Ensure lockfile is respected during MSRV testing (rust-lang/cargo#13523)
- feat: Use consistent colors when testing (rust-lang/cargo#13520)
Rollup of 9 pull requests
Successful merges:
- #121958 (Fix redundant import errors for preload extern crate)
- #121976 (Add an option to have an external download/bootstrap cache)
- #122022 (loongarch: add frecipe and relax target feature)
- #122026 (Do not try to format removed files)
- #122027 (Uplift some feeding out of `associated_type_for_impl_trait_in_impl` and into queries)
- #122063 (Make the lowering of `thir::ExprKind::If` easier to follow)
- #122074 (Add missing PartialOrd trait implementation doc for array)
- #122082 (remove outdated fixme comment)
- #122091 (Note why we're using a new thread in `test_get_os_named_thread`)
r? `@ghost`
`@rustbot` modify labels: rollup
Introduces the `arm64ec-pc-windows-msvc` target for building Arm64EC ("Emulation Compatible") binaries for Windows.
For more information about Arm64EC see <https://learn.microsoft.com/en-us/windows/arm/arm64ec>.
Tier 3 policy:
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I will be the maintainer for this target.
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
Target uses the `arm64ec` architecture to match LLVM and MSVC, and the `-pc-windows-msvc` suffix to indicate that it targets Windows via the MSVC environment.
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
Target name exactly specifies the type of code that will be produced.
> If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.
Done.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> The target must not introduce license incompatibilities.
Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Understood.
> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
Understood, I am not a member of the Rust team.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
Both `core` and `alloc` are supported.
Support for `std` dependends on making changes to the standard library, `stdarch` and `backtrace` which cannot be done yet as the bootstrapping compiler raises a warning ("unexpected `cfg` condition value") for `target_arch = "arm64ec"`.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Documentation is provided in src/doc/rustc/src/platform-support/arm64ec-pc-windows-msvc.md
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via @) to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
Understood.
compiletest: Add a `//@ needs-threads` directive
This commit is extracted from #122036 and adds a new directive to the `compiletest` test runner, `//@ needs-threads`. This is intended to capture the need that a target must implement threading to execute a specific test, typically one that uses `std::thread`. This is primarily done for WebAssembly targets which currently do not have threads by default. This enables transitioning a lot of `//@ ignore-wasm*`-style ignores into a more self-documenting `//@ needs-threads` directive. Additionally the `wasm32-wasi-preview1-threads` target, for example, does actually have threads, but isn't tested in CI at this time. This change enables running these tests for that target, but not other wasm targets.
Remove unnecessary fixme on new thread stack size
As the FIXME itself notes, there's nothing to fix here.
And as the documentation for [`CreateThread`] says of `dwStackSize`, the value is rounded up to the nearest page. A 4kb stack is very small but perfectly usable if you're careful. Of course it will be very limited but there's no reason to add artificial limits. We don't know what the user is doing.
[`CreateThread`]: https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
Refer to "slice" instead of "vector" in Ord and PartialOrd trait impl of slices
The trait implementation comments of Ord and PartialOrd for slice incorrectly mention "vectors" instead of "slices".
This PR fixes those two comments as requested in #122071.
Explicitly assign constructed C++ classes
C++ style guides I am aware of recommend specifically preferring = syntax for any classes with fairly obvious constructors[^0] that do not perform any complicated logic in their constructor. I contend that all constructors that the `rustc_llvm` code uses qualify. This has only become more common since C++ 17 guaranteed many cases of copy initialization elision.
The other detail is that I tried to ask another contributor with infinitely more C++ experience than me (i.e. any) what this constructor syntax was, and they thought it was a macro. I know of no other language that has adopted this same syntax. As the rustc codebase features many contributors experienced in many other languages, using a less... unique... style has many other benefits in making this code more lucid and maintainable, which is something it direly needs.
[^0]: e.g. https://abseil.io/tips/88
Add better explanation for `rustc_index::IndexVec`
I feel like I didn't do a great job explaining what this does in https://github.com/rust-lang/rust/pull/119800, so this PR tries to give an example of why and how you would use it.
Addresses #93792.
Note why we're using a new thread in `test_get_os_named_thread`
``@RalfJung`` expressed some "surprise and confusion" about why we're spawning a new thread in this test. Hopefully this comment will help future readers.
remove outdated fixme comment
The `TraitPredicate` no longer has constness as we have desugared it to work with the type system through const generics instead.
Add missing PartialOrd trait implementation doc for array
Analogously to vectors and slices, this PR documents the lexicographic sorting of PartialOrd as rustdoc comment on the trait implementation of PartialOrd for arrays.
Associated issue: #122073.
Make the lowering of `thir::ExprKind::If` easier to follow
This targets a few code patterns that I found very confusing when I first tried to understand what this code is doing.
No functional changes. I recommend looking at the changes individually, with whitespace hidden.