And make all hand-written `IntoDiagnostic` impls generic, by using
`DiagnosticBuilder::new(dcx, level, ...)` instead of e.g.
`dcx.struct_err(...)`.
This means the `create_*` functions are the source of the error level.
This change will let us remove `struct_diagnostic`.
Note: `#[rustc_lint_diagnostics]` is added to `DiagnosticBuilder::new`,
it's necessary to pass diagnostics tests now that it's used in
`into_diagnostic` functions.
Fix cases where std accidentally relied on inline(never)
This PR increases the power of `-Zcross-crate-inline-threshold=always` so that it applies through `#[inline(never)]`. Note that though this is called "cross-crate-inlining" in this case especially it is _just_ lazy per-CGU codegen. The MIR inliner and LLVM still respect the attribute as much as they ever have.
Trying to bootstrap with the new `-Zcross-crate-inline-threshold=always` change revealed two bugs:
We have special intrinsics `assert_inhabited`, `assert_zero_valid`, and `assert_mem_uniniitalized_valid` which codegen backends will lower to nothing or a call to `panic_nounwind`. Since we may not have any call to `panic_nounwind` in MIR but emit one anyway, we need to specially tell `MirUsedCollector` about this situation.
`#[lang = "start"]` is special-cased already so that `MirUsedCollector` will collect it, but then when we make it cross-crate-inlinable it is only assigned to a CGU based on whether `MirUsedCollector` saw a call to it, which of course we didn't.
---
I started looking into this because https://github.com/rust-lang/rust/pull/118683 revealed a case where we were accidentally relying on a function being `#[inline(never)]`, and cranking up cross-crate-inlinability seems like a way to find other situations like that.
r? `@nnethercote` because I don't like what I'm doing to the CGU partitioning code here but I can't come up with something much better
Tell MirUsedCollector that the pointer alignment checks calls its panic symbol
Fixes https://github.com/rust-lang/rust/pull/118683 (not an issue, but that PR is a basically a bug report)
When we had `panic_immediate_abort` start adding `#[inline]` to this panic function, builds started breaking because we failed to write up the MIR assert terminator to the correct panic shim. Things happened to work before by pure luck because without this feature enabled, the function we're inserting calls to is `#[inline(never)]` so we always generated code for it.
r? bjorn3
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Most notably, this commit changes the `pub use crate::*;` in that file
to `use crate::*;`. This requires a lot of `use` items in other crates
to be adjusted, because everything defined within `rustc_span::*` was
also available via `rustc_span::source_map::*`, which is bizarre.
The commit also removes `SourceMap::span_to_relative_line_string`, which
is unused.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
This query has a name that sounds general-purpose, but in fact it has
coverage-specific semantics, and (fortunately) is only used by coverage code.
Because it is only ever called once (from one designated CGU), it doesn't need
to be a query, and we can change it to a regular function instead.
Don't store lazyness in `DefKind::TyAlias`
1. Don't store lazyness of a type alias in its `DefKind`, but instead via a query.
2. This allows us to treat type aliases as lazy if `#[feature(lazy_type_alias)]` *OR* if the alias contains a TAIT, rather than having checks for both in separate parts of the codebase.
r? `@oli-obk` cc `@fmease`
rename mir::Constant -> mir::ConstOperand, mir::ConstKind -> mir::Const
Also, be more consistent with the `to/eval_bits` methods... we had some that take a type and some that take a size, and then sometimes the one that takes a type is called `bits_for_ty`.
Turns out that `ty::Const`/`mir::ConstKind` carry their type with them, so we don't need to even pass the type to those `eval_bits` functions at all.
However this is not properly consistent yet: in `ty` we have most of the methods on `ty::Const`, but in `mir` we have them on `mir::ConstKind`. And indeed those two types are the ones that correspond to each other. So `mir::ConstantKind` should actually be renamed to `mir::Const`. But what to do with `mir::Constant`? It carries around a span, that's really more like a constant operand that appears as a MIR operand... it's more suited for `syntax.rs` than `consts.rs`, but the bigger question is, which name should it get if we want to align the `mir` and `ty` types? `ConstOperand`? `ConstOp`? `Literal`? It's not a literal but it has a field called `literal` so it would at least be consistently wrong-ish...
``@oli-obk`` any ideas?
treat host effect params as erased in codegen
This fixes the changes brought to codegen tests when effect params are added to libcore, by not attempting to monomorphize functions that get the host param by being `const fn`.
r? `@oli-obk`
This fixes the changes brought to codegen tests when effect params are
added to libcore, by not attempting to monomorphize functions that get
the host param by being `const fn`.
Allow `large_assignments` for Box/Arc/Rc initialization
Does the `stop linting in box/arc initialization` task of #83518.
r? `@oli-obk` who is E-mentor.