Add way to express that no values are expected with check-cfg
This PR adds way to express no-values (no values expected) with `--check-cfg` by making empty `values()` no longer mean `values(none())` (internal: `&[None]`) and now be an empty list (internal: `&[]`).
### Context
Currently `--check-cfg` has a way to express that _any value is expected_ with `values(any())`, but has no way to do the inverse and say that _no value is expected_.
This would be particularly useful for build systems that control a config name and it's values as they could always declare a config name as expected and if in the current state they have values pass them and if not pass an empty list.
To give a more concrete example, Cargo `--check-cfg` currently needs to generate:
- `--check-cfg=cfg(feature, values(...))` for the case with declared features
- and `--check-cfg=cfg()` for the case without any features declared
This means that when there are no features declared, users will get an `unexpected config name` but from the point of view of Cargo the config name `feature` is expected, it's just that for now there aren't any values for it.
See [Cargo `check_cfg_args` function](92395d9010/src/cargo/core/compiler/mod.rs (L1263-L1281)) for more details.
### De-specializing *empty* `values()`
To solve this issue I propose that we "de-specialize" empty `values()` to no longer mean `values(none())` but to actually mean empty set/list. This is one of the last source of confusion for my-self and others with the `--check-cfg` syntax.
> The confusing part here is that an empty `values()` currently means the same as `values(none())`, i.e. an expected list of values with the _none_ variant (as in `#[cfg(name)]` where the value is none) instead of meaning an empty set.
Before the new `cfg()` syntax, defining the _none_ variant was only possible under certain circumstances, so in https://github.com/rust-lang/rust/pull/111068 I decided to make `values()` to mean the _none_ variant, but it is no longer necessary since https://github.com/rust-lang/rust/pull/119473 which introduced the `none()` syntax.
A simplified representation of the proposed "de-specialization" would be:
| Syntax | List/set of expected values |
|-----------------------------------------|-----------------------------|
| `cfg(name)`/`cfg(name, values(none()))` | `&[None]` |
| `cfg(name, values())` | `&[]` |
Note that I have my-self made the mistake of using an empty `values()` as meaning empty set, see https://github.com/rust-lang/cargo/pull/13011.
`@rustbot` label +F-check-cfg
r? `@petrochenkov`
cc `@epage`
In LLVM 17, PowerPC targets started including function pointer alignments
in data layouts, and in Rust's update to that version (#114048), we added
the function pointer alignments. `powerpc64-unknown-linux-musl` had
`Fi64` set but this seems incorrect, and the code in LLVM would always
have computed `Fn32` because it is a MUSL target.
Signed-off-by: David Wood <david@davidtw.co>
Adds a basic assembly test checking that each target can produce assembly
and update the target tier policy to require this.
Signed-off-by: David Wood <david@davidtw.co>
Rework how diagnostic lints are stored.
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
r? `@oli-obk`
fix fn/const items implied bounds and wf check (rebase)
A rebase of #104098, see that PR for discussion. This is pretty much entirely the work of `@aliemjay.` I received his permission for this rebase.
---
These are two distinct changes (edit: actually three, see below):
1. Wf-check all fn item args. This is a soundness fix.
Fixes#104005
2. Use implied bounds from impl header in borrowck of associated functions/consts. This strictly accepts more code and helps to mitigate the impact of other breaking changes.
Fixes#98852Fixes#102611
The first is a breaking change and will likely have a big impact without the the second one. See the first commit for how it breaks libstd.
Landing the second one without the first will allow more incorrect code to pass. For example an exploit of #104005 would be as simple as:
```rust
use core::fmt::Display;
trait ExtendLt<Witness> {
fn extend(self) -> Box<dyn Display>;
}
impl<T: Display> ExtendLt<&'static T> for T {
fn extend(self) -> Box<dyn Display> {
Box::new(self)
}
}
fn main() {
let val = (&String::new()).extend();
println!("{val}");
}
```
The third change is to to check WF of user type annotations before normalizing them (fixes#104764, fixes#104763). It is mutually dependent on the second change above: an attempt to land it separately in #104746 caused several crater regressions that can all be mitigated by using the implied from the impl header. It is also necessary for the soundness of associated consts that use the implied bounds of impl header. See #104763 and how the third commit fixes the soundness issue in `tests/ui/wf/wf-associated-const.rs` that was introduces by the previous commit.
r? types
I added `tcx` argument to `internal` to force 'tcx to be the same
lifetime as TyCtxt. The only other solution I could think is to change
this function to be `unsafe`.
Cache local DefId-keyed queries without hashing
This caches local DefId-keyed queries using just an IndexVec. This costs ~5% extra max-rss at most but brings significant runtime improvement, up to 13% cycle counts (mean: 4%) on primary benchmarks. It's possible that further tweaks could reduce the memory overhead further but this win seems worth landing despite the increased memory, particularly with regards to eliminating the present set in non-incr or storing it inline (skip list?) with the main data.
We tried applying this scheme to all keys in the [first perf run] but found that it carried a significant memory hit (50%). instructions/cycle counts were also much more mixed, though that may have been due to the lack of the present set optimization (needed for fast iter() calls in incremental scenarios).
Closes https://github.com/rust-lang/rust/issues/45275
[first perf run]: https://perf.rust-lang.org/compare.html?start=30dfb9e046aeb878db04332c74de76e52fb7db10&end=6235575300d8e6e2cc6f449cb9048722ef43f9c7&stat=instructions:u
Simplify the `run` macro to avoid sometimes unnecessary dependency
on `TyCtxt`. Instead, users can use the new internal method `tcx()`.
Additionally, extend the macro to accept closures that may capture
variables.
These are non-backward compatible changes, but they only affect
internal APIs which are provided today as helper functions until we
have a stable API to start the compiler.
Lint `overlapping_ranges_endpoints` directly instead of collecting into a Vec
In https://github.com/rust-lang/rust/pull/119396 I was a bit silly: I was trying to avoid any lints being fired from within the exhaustiveness algorithm for some vague aesthetic/reusability reason that doesn't really hold. This PR fixes that: instead of passing a `&mut Vec` around I just added a method to the `TypeCx` trait.
r? `@compiler-errors`
Simplify `closure_env_ty` and `closure_env_param`
Random cleanup that I found when working on async closures. This makes it easier to separate the latter into a new tykind.
Make sure to instantiate placeholders correctly in old solver
When creating the query substitution guess for an input placeholder type like `!1_T` (in universe 1), we were guessing the response substitution with something like `!0_T`. This failed to unify with `!1_T`, causing an ICE.
This PR reworks the query substitution guess code to work a bit more like the new solver. I'm *pretty* sure this is correct, though I'd really appreciate some scrutiny from someone (*cough* lcnr) who knows a bit more about query instantiation :)
Fixes#119941
r? lcnr
Sandwich MIR optimizations between DSE.
This PR reorders MIR optimization passes in an attempt to increase their efficiency.
- Stop running CopyProp before GVN, it's useless as GVN will do the same thing anyway. Instead, we perform CopyProp at the end of the pipeline, to ensure we do not emit copy/move chains.
- Run DSE before GVN, as it increases the probability to have single-assignment locals.
- Run DSE after the final CopyProp to turn copies into moves.
r? `@ghost`
Avoid some redundant work in GVN
The first 2 commits are about reducing the perf effect.
Third commit avoids doing redundant work: is a local is SSA, it already has been simplified, and the resulting value is in `self.locals`. No need to call any code on it.
The last commit avoids removing some storage statements.
r? wg-mir-opt
Foreign maps are used to cache external DefIds, typically backed by
metadata decoding. In the future we might skip caching `V` there (since
loading from metadata usually is already cheap enough), but for now this
cuts down on the impact to memory usage and time to None-init a bunch of
memory. Foreign data is usually much sparser, since we're not usually
loading *all* entries from the foreign crate(s).
never patterns: Check bindings wrt never patterns
Never patterns:
- Shouldn't contain bindings since they never match anything;
- Don't count when checking that or-patterns have consistent bindings.
r? `@compiler-errors`
Use `zip_eq` to enforce that things being zipped have equal sizes
Some `zip`s are best enforced to be equal, since size mismatches suggest deeper bugs in the compiler.
Fix `allow_internal_unstable` for `(min_)specialization`
Fixes#119950
Blocked on #119949 (comment doesn't make sense until that merges)
I'd like to follow this up and look for more instances of not properly checking spans for features but I wanted to fix the motivating issue.
`OutputTypeParameterMismatch` -> `SignatureMismatch`
I'm probably missing something that made this rename more complicated. What did you end up getting stuck on when renaming this selection error, `@lcnr?`
**also** I renamed the `FulfillmentErrorCode` variants. This is just churn but I wanted to do it forever. I can move it out of this PR if desired.
r? lcnr
Silence some follow-up errors [3/x]
this is one piece of the requested cleanups from https://github.com/rust-lang/rust/pull/117449
Keep error types around, even in obligations.
These help silence follow-up errors, as we now figure out that some types (most notably inference variables) are equal to an error type.
But it also allows figuring out more types in the presence of errors, possibly causing more errors.
coverage: Simplify building the coverage graph with `CoverageSuccessors`
This is a collection of simplifications to the code that builds the *basic coverage block* graph, which is a simplified view of the MIR control-flow graph that ignores panics and merges straight-line sequences of blocks into a single BCB node.
The biggest change is to how we determine the coverage-relevant successors of a block. Previously we would call `Terminator::successors` and apply some ad-hoc postprocessing, but with this PR we instead have our own `match` on the terminator kind that produces a coverage-specific enum `CoverageSuccessors`. That enum also includes information about whether a block has exactly one successor that it can be chained into as part of a single BCB.
Exhaustiveness: remove the need for arena-allocation within the algorithm
After https://github.com/rust-lang/rust/pull/119688, exhaustiveness checking doesn't need access to the arena anymore. This simplifies the lifetime story and makes it compile on stable without the extra dependency.
r? `@compiler-errors`
Inverting the condition lets us merge the two `Ok(false)` paths. I also
find the inverted condition easier to read: "all the things that must be
true for trimming to occur", instead of "any of the things that must be
true for trimming to not occur".
Don't ICE when noting GAT bounds in `report_no_match_method_error`
We can encounter `BindingObligation`s from GATs that we should handle in `report_no_match_method_error`. I assume we can encounter them from methods, though I didn't really feel like wasting my time creating a repro.
Fixes#119942
Make `InferCtxtExt::could_impl_trait` more precise, less ICEy
The implementation for `InferCtxtExt::could_impl_trait` was very wrong. Along with being pretty poorly named, way too specific to ADTs, it was also doing impl substitution wrong -- this caused an ICE (#119915).
This PR generalizes that code, gives it a clearer name, makes it stop using the new trait solver (lol), and fixes some fallout bad suggestions that are made worse with the code fix.
Fixes#119915
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
This also switches from `split_off(0)` to `std::mem::take` when emptying the
accumulated list of blocks, because `split_off(0)` handles capacity in a way
that is unintuitive when used in a loop.
The old loop had two separate places where it would flush the acumulated list
of straight-line blocks into a new BCB. One occurred at the start of the loop
body when the current block couldn't be chained into, and the other occurred at
the end of the loop body when the current block couldn't be chained from.
The latter check can be hoisted to the start of the loop body by making it
examine the previous block (which has added itself to the list) instead of the
current block. With that done, we can combine the two separate flushes into one
flush with two possible trigger conditions.
Filtering out unreachable successors is only needed by the main graph traversal
loop, so we can move the filtering step into that loop instead, eliminating the
need to pass the MIR body into `bcb_filtered_successors`.
store the segment name when resolution fails
Fixes#112672
The `find_cfg_stripped` does indeed get executed within `smart_resolve_report_errors`. However, this error is not reported as it is subsequently overridden by `parent_err`. (See: https://github.com/rust-lang/rust/blob/master/compiler/rustc_resolve/src/late.rs#L3760)
This PR changes `last_segment` to `segment`, which stores the name of the failed resolution, and ensures that the result of `find_cfg_stripped` is also included in `parent_err`.
r? ```@Nilstrieb```
Suggest Upgrading Compiler for Gated Features
This PR addresses #117318
I have a few questions:
1. Do we want to specify the current version and release date of the compiler? I have added this in via environment variables, which I found in the code for the rustc cli where it handles the `--version` flag
a. How can I handle the changing message in the tests?
3. Do we want to only show this message when the compiler is old?
a. How can we determine when the compiler is old?
I'll wait until we figure out the message to bless the tests
Move platform modules into `sys::pal`
This is the initial step of #117276. `sys` just re-exports everything from the current `sys` for now, I'll move the implementations for the individual features one-by-one after this PR merges.
Taint `_` placeholder types in trait impl method signatures
We report an error right below for them, but that kind of broken type can cause subsequent ICEs.
fixes#119867
Allow `~const` on associated type bounds again
This follows from [this Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/419616-t-compiler.2Fproject-const-traits/topic/projections.20on.20.28~.29const.20Trait.20.26.20.28~.29const.20assoc.20ty.20bounds).
Basically in my opinion, it makes sense to allow `~const` on associated type bounds again since they're quite useful even though we haven't implemented the proposed syntax `<Ty as ~const Trait>::Proj`/`<Ty as const Trait>::Proj` yet; that can happen as a follow-up.
This already allows more code to compile since `T::Assoc` where `T` is a type parameter and where the predicate `<T as ~const Trait>` is in the environment gets elaborated to (pseudo) `<T as ~const Trait>::Assoc`.
```rs
#[const_trait]
trait Trait {
type Assoc: ~const Trait;
fn func() -> i32;
}
const fn function<T: ~const Trait>() -> i32 {
T::Assoc::func()
}
```
`~const` associated type bounds also work together with `const` bounds:
```rs
struct Type<const N: i32>;
fn procedure<T: const Trait>() -> Type<{ T::Assoc::func() }> { // `Trait` comes from above
Type
}
```
NB: This PR also starts allowing `~const` bounds in the generics and the where-clause of trait associated types since it's trivial to support them. However, I don't know if those bounds are actually useful. Maybe we should continue to reject them?
For reference, it wouldn't make any sense to allow `~const Trait` in GACs (generic associated constants, `generic_const_items`) because they'd be absolutely useless (contrary to `const Trait`).
~~[``@]rustbot`` ping project-const-traits~~
r? project-const-traits
Varargs support for system ABI
This PR allows functions with the `system` ABI to be variadic (under the `extended_varargs_abi_support` feature tracked in #100189). On x86 windows, the `system` ABI is equivalent to `C` for variadic functions. On other platforms, `system` is already equivalent to `C`.
Fixes#110505
Overhaul `-Ztreat-err-as-bug`
It's current behaviour is surprising, in a bad way. This also makes the implementation more complex than it needs to be.
r? `@oli-obk`
Add explicit `none()` value variant in check-cfg
This PR adds an explicit none value variant in check-cfg values: `values(none())`.
Currently the only way to define the none variant is with an empty `values()` which means that if someone has a cfg that takes none and strings they need to use two invocations: `--check-cfg=cfg(foo) --check-cfg=cfg(foo, values("bar"))`.
Which would now be `--check-cfg=cfg(foo, values(none(),"bar"))`, this is simpler and easier to understand.
`--check-cfg=cfg(foo)`, `--check-cfg=cfg(foo, values())` and `--check-cfg=cfg(foo, values(none()))` would be equivalent.
*Another motivation for doing this is to make empty `values()` actually means no-values, but this is orthogonal to this PR and adding `none()` is sufficient in it-self.*
`@rustbot` label +F-check-cfg
r? `@petrochenkov`
`-Ztreat-err-as-bug` treats normal errors and delayed bugs equally,
which can lead to some really surprising results.
This commit changes `-Ztreat-err-as-bug` so it ignores delayed bugs,
unless they get promoted to proper bugs and are printed.
This feels to me much simpler and more logical. And it simplifies the
implementation:
- The `-Ztreat-err-as-bug` check is removed from in
`DiagCtxt::{delayed_bug,span_delayed_bug}`.
- `treat_err_as_bug` doesn't need to count delayed bugs.
- The `-Ztreat-err-as-bug` panic message is simpler, because it doesn't
have to mention delayed bugs.
Output of delayed bugs is now more consistent. They're always printed
the same way. Previously when they triggered `-Ztreat-err-as-bug` they
would be printed slightly differently, via `span_bug` in
`span_delayed_bug` or `delayed_bug`.
A minor behaviour change: the "no errors encountered even though
`span_delayed_bug` issued" printed before delayed bugs is now a note
rather than a bug. This is done so it doesn't get counted as an error
that might trigger `-Ztreat-err-as-bug`, which would be silly.
This means that if you use `-Ztreat-err-as-bug=1` and there are no
normal errors but there are delayed bugs, the first delayed bug will be
shown (and the panic will happen after it's printed).
Also, I have added a second note saying "those delayed bugs will now be
shown as internal compiler errors". I think this makes it clearer what
is happening, because the whole concept of delayed bugs is non-obvious.
There are some test changes.
- equality-in-canonical-query.rs: Minor output changes, and the error
count reduces by one because the "no errors encountered even though
`span_delayed_bug` issued" message is no longer counted as an error.
- rpit_tait_equality_in_canonical_query.rs: Ditto.
- storage-live.rs: The query stack disappears because these delayed bugs
are now printed at the end, rather than when they are created.
- storage-return.rs, span_delayed_bug.rs: now need
`-Zeagerly-emit-delayed-bugs` because they need the delayed bugs
emitted immediately to preserve behaviour.
Fix unused_parens issue when cast is followed LT
Fixes#117142
The original check only checks `a as (i32) < 0`, this fix extends it to handle `b + a as (i32) < 0`.
A better way is maybe we suggest `(a as i32) < 0` instead of suppressing the warning, maybe following PR could improve it.
Add more information to `visit_projection_elem`
Without the starting place, it's hard to retrieve any useful information from visiting a projection.
Note: I still need to add a test.
Give me a way to emit all the delayed bugs as errors (add `-Zeagerly-emit-delayed-bugs`)
This is probably a *better* way to inspect all the delayed bugs in a program that what exists currently (and therefore makes it very easy to choose the right number `N` with `-Zemit-err-as-bug=N`, though I guess the naming is a bit ironic when you pair both of the flags together, but that feels like naming bikeshed more than anything).
This pacifies my only concern with https://github.com/rust-lang/rust/pull/119871#issuecomment-1888170259, because (afaict?) that PR doesn't allow you to intercept a delayed bug's stack trace anymore, which as someone who debugs the compiler a lot, is something that I can *promise* that I do.
r? `@nnethercote` or `@oli-obk`
Remove special-casing around `AliasKind::Opaque` when structurally resolving in new solver
This fixes a few inconsistencies around where we don't eagerly resolve opaques to their (locally-defined) hidden types in the new solver. It essentially allows this code to work:
```rust
fn main() {
type Tait = impl Sized;
struct S {
i: i32,
}
let x: Tait = S { i: 0 };
println!("{}", x.i);
}
```
Since `Tait` is defined in `main`, we are able to poke through the type of `x` with deref.
r? lcnr
Exhaustiveness: track overlapping ranges precisely
The `overlapping_range_endpoints` lint has false positives, e.g. https://github.com/rust-lang/rust/issues/117648. I expected that removing these false positives would have too much of a perf impact but never measured it. This PR is an experiment to see if the perf loss is manageable.
r? `@ghost`
Register even erroneous impls
Otherwise the specialization graph fails to pick it up, even though other code assumes that all impl blocks have an entry in the specialization graph.
also includes an unrelated cleanup of the specialization graph query
fixes #119827
Set `c_str_literals` stabilization version back to `CURRENT_RUSTC_VERSION`
`c_str_literals`'s stabilization has been delayed to 1.77 (https://github.com/rust-lang/rust/pull/119528).
next solver: provisional cache
this adds the cache removed in #115843. However, it should now correctly track whether a provisional result depends on an inductive or coinductive stack.
While working on this, I was using the following doc: https://hackmd.io/VsQPjW3wSTGUSlmgwrDKOA. I don't think it's too helpful to understanding this, but am somewhat hopeful that the inline comments are more useful.
There are quite a few future perf improvements here. Given that this is already very involved I don't believe it is worth it (for now). While working on this PR one of my few attempts to significantly improve perf ended up being unsound again because I was not careful enough ✨
r? `@compiler-errors`
By making it an `EscapeError` instead of a `LitError`. This makes it
like the other errors produced when checking string literals contents,
e.g. for invalid escape sequences or bare CR chars.
NOTE: this means these errors are issued earlier, before expansion,
which changes behaviour. It will be possible to move the check back to
the later point if desired. If that happens, it's likely that all the
string literal contents checks will be delayed together.
One nice thing about this: the old approach had some code in
`report_lit_error` to calculate the span of the nul char from a range.
This code used a hardwired `+2` to account for the `c"` at the start of
a C string literal, but this should have changed to a `+3` for raw C
string literals to account for the `cr"`, which meant that the caret in
`cr"` nul error messages was one short of where it should have been. The
new approach doesn't need any of this and avoids the off-by-one error.
There are two places that handle normal delayed bugs. This commit
factors out some repeated code.
Also, we can use `std::mem::take` instead of `std::mem::replace`.
coverage: Add enums to accommodate other kinds of coverage mappings
Extracted from #118305.
LLVM supports several different kinds of coverage mapping regions, but currently we only ever emit ordinary “code” regions. This PR performs the plumbing required to add other kinds of regions as enum variants, but does not add any specific variants other than `Code`.
The main motivation for this change is branch coverage, but it will also allow separate experimentation with gap regions and skipped regions, which might help in producing more accurate and useful coverage reports.
---
``@rustbot`` label +A-code-coverage
Remove `DiagnosticBuilder::buffer`
`DiagnosticBuilder::buffer` doesn't do much, and part of what it does (for `-Ztreat-err-as-bug`) it shouldn't.
This PR strips it back, replaces its uses, and finally removes it, making a few cleanups in the vicinity along the way.
r? ``@oli-obk``
Silence some follow-up errors [2/x]
this is one piece of the requested cleanups from https://github.com/rust-lang/rust/pull/117449
the `type_of` query frequently uses astconv to convert a `hir::Ty` to a `ty::Ty`. This process is infallible, but may produce errors as it goes. All the error reporting sites that had access to the `ItemCtxt` are now tainting it, causing `type_of` to return a `ty::Error` instead of anything else.
annotate-snippets: update to 0.10
Ports `annotate-snippets` to 0.10, temporary dupes versions; other crates left that depends on 0.9 is `ui_test` and `rustfmt`.
Remove a large amount of leb128-coded integers
This removes ~41%[^1] of the leb128-encoded integers serialized during libcore compilation by changing enum tags to opportunistically use `u8` where feasible instead of the leb128 coding via `usize`.
This should have effectively zero impact on metadata file sizes, since almost all or all enum tags fit into the 7 bits available in leb128 for single-byte encodings. Perf results indicate this is basically neutral across the board except for an improvement in bootstrap time.
[^1]: More than half the remaining integers still fit into <= 128, so the leb128 coding still makes sense. 32% are zero, and 46% are <= 4.
One consequence is that errors returned by
`maybe_new_parser_from_source_str` now must be consumed, so a bunch of
places that previously ignored those errors now cancel them. (Most of
them explicitly dropped the errors before. I guess that was to indicate
"we are explicitly ignoring these", though I'm not 100% sure.)
Stop mentioning internal lang items in no_std binary errors
When writing a no_std binary, you'll be greeted with nonsensical errors mentioning lang items like eh_personality and start. That's pretty bad because it makes you think that you need to define them somewhere! But oh no, now you're getting the `internal_features` lint telling you that you shouldn't use them! But you need a no_std binary! What now?
No problem! Writing a no_std binary is super easy. Just use panic=abort and supply your own platform specific entrypoint symbol (like `main`) and you're good to go. Would be nice if the compiler told you that, right?
This makes it so that it does do that.
I don't _love_ the new messages yet, but they're decent I think. They can probably be improved, please suggest improvements.
Two different lifetimes are conflated. This doesn't matter right now,
but needs to be fixed for the next commit to work. And the more
descriptive lifetime names make the code easier to read.
But we can't easily switch from `Vec<Diagnostic>` to
`Vec<DiagnosticBuilder<G>>` because there's a mix of errors and warnings
which result in different `G` types. So we must make
`DiagnosticBuilder::into_diagnostic` public, but that's ok, and it will
get more use in subsequent commits.
Each of these has a single call site: `source_file_to_parser`,
`try_file_to_source_file`, `file_to_source_file`. Having them separate
just makes the code longer and harder to read.
Also, `maybe_file_to_stream` doesn't need to be `pub`.
It seems very wrong to have a `-Ztreat-err-as-bug` check here before the
error is even emitted.
Once that's done:
- `into_diagnostic` is infallible, so its return type doesn't need the
`Option`;
- the `&'a DiagCtxt` also isn't needed, because only one callsite uses
it, and it already have access to it via `self.dcx`;
- the comments about dcx disabling buffering are no longer true, this is
unconditional now;
- and the `debug!` seems unnecessary... the comment greatly overstates
its importance because few diagnostics come through `into_diagnostic`,
and `-Ztrack-diagnostics` exists anyway.
Errors in `DiagCtxtInner::emit_diagnostic` are never set to
`Level::Bug`, because the condition never succeeds, because
`self.treat_err_as_bug()` is called *before* the error counts are
incremented.
This commit switches to `self.treat_next_err_as_bug()`, fixing the
problem. This changes the error message output to actually say "internal
compiler error".
This is less elegant in some ways, since we no longer visit a BCB's spans as a
batch, but will make it much easier to add support for other kinds of coverage
mapping regions (e.g. branch regions or gap regions).
Reorder early post-inlining passes.
`RemoveZsts`, `RemoveUnneededDrops` and `UninhabitedEnumBranching` only depend on types, so they should be executed together early after MIR inlining introduces those types.
This does not change the end-result, but this makes the pipeline a bit more consistent.
Rollup of 11 pull requests
Successful merges:
- #115046 (Use version-sorting for all sorting)
- #118915 (Add some comments, add `can_define_opaque_ty` check to `try_normalize_ty_recur`)
- #119006 (Fix is_global special address handling)
- #119637 (Pass LLVM error message back to pass wrapper.)
- #119715 (Exhaustiveness: abort on type error)
- #119763 (Cleanup things in and around `Diagnostic`)
- #119788 (change function name in comments)
- #119790 (Fix all_trait* methods to return all traits available in StableMIR)
- #119803 (Silence some follow-up errors [1/x])
- #119804 (Stabilize mutex_unpoison feature)
- #119832 (Meta: Add project const traits to triagebot config)
r? `@ghost`
`@rustbot` modify labels: rollup
Silence some follow-up errors [1/x]
this is one piece of the requested cleanups from https://github.com/rust-lang/rust/pull/117449
When we use `-> impl SomeTrait<_>` as a return type, we are both using the "infer return type suggestion" code path, and the infer opaque type code path within the same function. That can lead to confusing diagnostics, so silence all opaque type diagnostics in that case.
Cleanup things in and around `Diagnostic`
These changes all arose when I was looking closely at how to simplify `DiagCtxtInner::emit_diagnostic`.
r? `@compiler-errors`
Pass LLVM error message back to pass wrapper.
When rustc fails to load a plugin, it should provide more detailed error message. Before this PR, rustc prints:
```
error: failed to run LLVM passes: Failed to load pass pluginPLUGIN_NAME.so
```
This PR passes LLVM errors back to rustc. After this PR, rustc prints:
```
error: failed to run LLVM passes: Could not load library 'PLUGIN_NAME.so': PLUGIN_NAME.so: undefined symbol: _ZN4llvm9DebugFlagE
```
This PR only contains usability improvements and does not change any functionality. Thus, no new unit test is implemented.
Exhaustiveness: use an `Option` instead of allocating fictitious patterns
In the process of exhaustiveness checking, `Matrix` stores a 2D array of patterns. Those are subpatterns of the patterns we were provided as input, _except_ sometimes we allocate some extra wildcard patterns to fill a hole during specialization.
Morally though, we could store `Option<&'p DeconstructedPat>` in the matrix, where `None` signifies a wildcard. That way we'd only have "real" patterns in the matrix and we wouldn't need the arena to allocate these wildcards. This is what this PR does.
This is part of me splitting up https://github.com/rust-lang/rust/pull/119581 for ease of review.
r? `@compiler-errors`
Of the error levels satisfying `is_error`, `Level::Error` is the only
one that can be a lint, so there's no need to check for it.
(And even if it wasn't, it would make more sense to include
non-`Error`-but-`is_error` lints under `lint_err_count` than under
`err_count`.)
There are four functions that adjust error and warning counts:
- `stash_diagnostic` (increment)
- `steal_diagnostic` (decrement)
- `emit_stashed_diagnostics) (decrement)
- `emit_diagnostic` (increment)
The first three all behave similarly, and only update `warn_count` for
forced warnings. But the last one updates `warn_count` for both forced
and non-forced warnings.
Seems like a bug. How should it be fixed? Well, `warn_count` is only
used in one place: `DiagCtxtInner::drop`, where it's part of the
condition relating to the printing of `good_path_delayed_bugs`. The
intention of that condition seems to be "have any errors been printed?"
so this commit replaces `warn_count` with `has_printed`, which is set
when printing occurs. This is simpler than all the ahead-of-time
incrementing and decrementing.
`is_force_warn` is only possible for diagnostics with `Level::Warning`,
but it is currently stored in `Diagnostic::code`, which every diagnostic
has.
This commit:
- removes the boolean `DiagnosticId::Lint::is_force_warn` field;
- adds a `ForceWarning` variant to `Level`.
Benefits:
- The common `Level::Warning` case now has no arguments, replacing
lots of `Warning(None)` occurrences.
- `rustc_session::lint::Level` and `rustc_errors::Level` are more
similar, both having `ForceWarning` and `Warning`.
When writing a no_std binary, you'll be greeted with nonsensical errors
mentioning lang items like eh_personality and start. That's pretty bad
because it makes you think that you need to define them somewhere! But
oh no, now you're getting the `internal_features` lint telling you that
you shouldn't use them! But you need a no_std binary! What now?
No problem! Writing a no_std binary is super easy. Just use panic=abort
and supply your own platform specific entrypoint symbol (like `main`)
and you're good to go. Would be nice if the compiler told you that,
right?
This makes it so that it does do that.
Diagnostic API fixes
Some improvements to diagnostic APIs: improve some naming, use shortcuts in more places, and add a couple of missing methods.
r? `@compiler-errors`
This stabilizes all methods under `slice_first_last_chunk`.
Additionally, it const stabilizes the non-mut functions and moves the `_mut`
functions under `const_slice_first_last_chunk`. These are blocked on
`const_mut_refs`.
As part of this change, `slice_split_at_unchecked` was marked const-stable for
internal use (but not fully stable).
This removes emit_enum_variant and the emit_usize calls that resulted
in. In libcore this eliminates 17% of leb128, taking us from 8964488 to
7383842 leb128's serialized.
100% of the serialized enums during libcore compilation fit into the
smaller tag, and this eliminates hitting the leb128 code for
coding/decoding when we can statically guarantee that's not required.
30% of all leb128 integers serialized in libcore (12981183 total) come
from the usize's removed here.
Avoid silencing relevant follow-up errors
r? `@matthewjasper`
This PR only adds new errors to tests that are already failing and fixes one ICE.
Several tests were changed to not emit new errors. I believe all of them were faulty tests, and not explicitly testing for the code that had new errors.
This lets us avoid the use of `DiagnosticBuilder::into_diagnostic` in
miri, when then means that `DiagnosticBuilder::into_diagnostic` can
become private, being now only used by `stash` and `buffer`.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
We have `span_delayed_bug` and often pass it a `DUMMY_SP`. This commit
adds `delayed_bug`, which matches pairs like `err`/`span_err` and
`warn`/`span_warn`.
- `struct_foo` + `emit` -> `foo`
- `create_foo` + `emit` -> `emit_foo`
I have made recent commits in other PRs that have removed some of these
shortcuts for combinations with few uses, e.g.
`struct_span_err_with_code`. But for the remaining combinations that
have high levels of use, we might as well use them wherever possible.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
`~const` trait and projection bounds do not imply their non-const counterparts
This PR removes the hack where we install a non-const trait and projection bound for every `const_trait` and `~const` projection bound we have in the AST. It ends up messing up more things than it fixes, see words below.
Fixes#119718
cc `@fmease` `@fee1-dead` `@oli-obk`
r? fee1-dead or one of y'all i don't care
---
My understanding is that this hack was added to support the following code:
```rust
pub trait Owo<X = <Self as Uwu>::T> {}
#[const_trait]
pub trait Uwu: Owo {}
```
Which is concretely lifted from in the `FromResidual` and `Try` traits. Since within the param-env of `trait Uwu`, we only know that `Self: ~const Uwu` and not `Self: Uwu`, the projection `<Self as Uwu>::T` is not satsifyable.
This causes problems such as #119718, since instantiations of `FnDef` types coming from `const fn` really do **only** implement one of `FnOnce` or `const FnOnce`!
---
In the long-term, I believe that such code should really look something more like:
```rust
#[const_trait]
pub trait Owo<X = <Self as ~const Uwu>::T> {}
#[const_trait]
pub trait Uwu: Owo {}
```
... and that we should introduce some sort of `<T as ~const Foo>::Bar` bound syntax, since due to the fact that `~const` bounds can be present in item bounds, e.g.
```rust
#[const_trait] trait Foo { type Bar: ~const Destruct; }
```
It's easy to see that `<T as Foo>::Bar` and `<T as ~const Foo>::Bar` (or `<T as const Foo>::Bar`) can be distinct types with distinct item bounds!
**Admission**: I know I've said before that I don't like `~const` projection syntax, I do at this point believe they're necessary to fully express bounds and types in a maybe-const world.