Simd contains fix
Fixes#104726
The bug was introduced by an improvement late in the original PR (#103779) which added the backtracking when the last and first byte of the needle were the same. That changed the meaning of the variable for the last probe offset, which I should have split into the last byte offset and last probe offset. Not doing so lead to incorrect loop conditions.
Update Clippy
r? `@Manishearth`
Sorry for taking so long. There were so many blockers and so little time. This situation should be mitigated with #104007 in the future.
disable strict-provenance-violating doctests in Miri
Most of these are on deprecated unstable functions anyway. This lets us run the remaining doctests with `-Zmiri-strict-provenance`, which I think is a win.
r? `@thomcc`
Remove a lifetime resolution hack from `compare_predicate_entailment`
This is not needed anymore, probably due to #102334 equating the function signatures fully in `collect_trait_impl_trait_tys`. Also, the assertion in in #102903 makes sure that this is actually fixed, so I'm pretty confident this isn't needed.
Only declare bindings for if-let guards once per arm
Currently, each candidate for a match arm uses separate locals for the bindings in the if-let guard, causing problems (#88015) when those branches converge in the arm body.
Fixes#88015 (🤞)
Check generics parity before collecting return-position `impl Trait`s in trait
The only thing is that this duplicates the error message for number of generics mismatch, but we already deduplicate that error message in Cargo. I could add a flag to delay the error if the reviewer cares.
Fixes#104281
Also drive-by adds a few comments to the `collect_trait_impl_trait_tys` method, and removes an unused argument from `compare_number_of_generics`.
Use clang for the UEFI targets
This fixes an issue where the C and asm sources built by compiler_builtins were being compiled as ELF objects instead of PE objects. This wasn't noticed before because it doesn't cause compiler_builtins or rustc to fail to build. You only see a failure when a program is built that references one of the symbols in an ELF object.
Compiling with clang fixes this because the cc crate converts the UEFI targets into Windows targets that clang understands, causing it to produce PE objects.
Also update compiler_builtins to 0.1.84 to pull in some necessary fixes for compiling the UEFI targets with clang.
Fixes https://github.com/rust-lang/rust/issues/104326
Constify remaining `Layout` methods
Makes the methods on `Layout` that aren't yet unstably const, under the same feature and issue, #67521. Most of them required no changes, only non-trivial change is probably constifying `ValidAlignment` which may affect #102072
Deprecate the unstable `ptr_to_from_bits` feature
I propose that we deprecate the (unstable!) `to_bits` and `from_bits` methods on raw pointers. (With the intent to ~~remove them once `addr` has been around long enough to make the transition easy on people -- maybe another 6 weeks~~ remove them fairly soon after, as the strict and expose versions have been around for a while already.)
The APIs that came from the strict provenance explorations (#95228) are a more holistic version of these, and things like `.expose_addr()` work for the "that cast looks sketchy" case even if the full strict provenance stuff never happens. (As a bonus, `addr` is even shorter than `to_bits`, though it is only applicable if people can use full strict provenance! `addr` is *not* a direct replacement for `to_bits`.) So I think it's fine to move away from the `{to|from}_bits` methods, and encourage the others instead.
That also resolves the worry that was brought up (I forget where) that `q.to_bits()` and `(*q).to_bits()` both work if `q` is a pointer-to-floating-point, as they also have a `to_bits` method.
Tracking issue #91126
Code search: https://github.com/search?l=Rust&p=1&q=ptr_to_from_bits&type=Code
For potential pushback, some users in case they want to chime in
- `@RSSchermer` 365bb68541/arwa/src/html/custom_element.rs (L105)
- `@strax` 99616d1dbf/openexr/src/core/alloc.rs (L36)
- `@MiSawa` 577c622358/crates/kernel/src/timer.rs (L50)
Add slice methods for indexing via an array of indices.
Disclaimer: It's been a while since I contributed to the main Rust repo, apologies in advance if this is large enough already that it should've been an RFC.
---
# Update:
- Based on feedback, removed the `&[T]` variant of this API, and removed the requirements for the indices to be sorted.
# Description
This adds the following slice methods to `core`:
```rust
impl<T> [T] {
pub unsafe fn get_many_unchecked_mut<const N: usize>(&mut self, indices: [usize; N]) -> [&mut T; N];
pub fn get_many_mut<const N: usize>(&mut self, indices: [usize; N]) -> Option<[&mut T; N]>;
}
```
This allows creating multiple mutable references to disjunct positions in a slice, which previously required writing some awkward code with `split_at_mut()` or `iter_mut()`. For the bound-checked variant, the indices are checked against each other and against the bounds of the slice, which requires `N * (N + 1) / 2` comparison operations.
This has a proof-of-concept standalone implementation here: https://crates.io/crates/index_many
Care has been taken that the implementation passes miri borrow checks, and generates straight-forward assembly (though this was only checked on x86_64).
# Example
```rust
let v = &mut [1, 2, 3, 4];
let [a, b] = v.get_many_mut([0, 2]).unwrap();
std::mem::swap(a, b);
*v += 100;
assert_eq!(v, &[3, 2, 101, 4]);
```
# Codegen Examples
<details>
<summary>Click to expand!</summary>
Disclaimer: Taken from local tests with the standalone implementation.
## Unchecked Indexing:
```rust
pub unsafe fn example_unchecked(slice: &mut [usize], indices: [usize; 3]) -> [&mut usize; 3] {
slice.get_many_unchecked_mut(indices)
}
```
```nasm
example_unchecked:
mov rcx, qword, ptr, [r9]
mov r8, qword, ptr, [r9, +, 8]
mov r9, qword, ptr, [r9, +, 16]
lea rcx, [rdx, +, 8*rcx]
lea r8, [rdx, +, 8*r8]
lea rdx, [rdx, +, 8*r9]
mov qword, ptr, [rax], rcx
mov qword, ptr, [rax, +, 8], r8
mov qword, ptr, [rax, +, 16], rdx
ret
```
## Checked Indexing (Option):
```rust
pub unsafe fn example_option(slice: &mut [usize], indices: [usize; 3]) -> Option<[&mut usize; 3]> {
slice.get_many_mut(indices)
}
```
```nasm
mov r10, qword, ptr, [r9, +, 8]
mov rcx, qword, ptr, [r9, +, 16]
cmp rcx, r10
je .LBB0_7
mov r9, qword, ptr, [r9]
cmp rcx, r9
je .LBB0_7
cmp rcx, r8
jae .LBB0_7
cmp r10, r9
je .LBB0_7
cmp r9, r8
jae .LBB0_7
cmp r10, r8
jae .LBB0_7
lea r8, [rdx, +, 8*r9]
lea r9, [rdx, +, 8*r10]
lea rcx, [rdx, +, 8*rcx]
mov qword, ptr, [rax], r8
mov qword, ptr, [rax, +, 8], r9
mov qword, ptr, [rax, +, 16], rcx
ret
.LBB0_7:
mov qword, ptr, [rax], 0
ret
```
## Checked Indexing (Panic):
```rust
pub fn example_panic(slice: &mut [usize], indices: [usize; 3]) -> [&mut usize; 3] {
let len = slice.len();
match slice.get_many_mut(indices) {
Some(s) => s,
None => {
let tmp = indices;
index_many::sorted_bound_check_failed(&tmp, len)
}
}
}
```
```nasm
example_panic:
sub rsp, 56
mov rax, qword, ptr, [r9]
mov r10, qword, ptr, [r9, +, 8]
mov r9, qword, ptr, [r9, +, 16]
cmp r9, r10
je .LBB0_6
cmp r9, rax
je .LBB0_6
cmp r9, r8
jae .LBB0_6
cmp r10, rax
je .LBB0_6
cmp rax, r8
jae .LBB0_6
cmp r10, r8
jae .LBB0_6
lea rax, [rdx, +, 8*rax]
lea r8, [rdx, +, 8*r10]
lea rdx, [rdx, +, 8*r9]
mov qword, ptr, [rcx], rax
mov qword, ptr, [rcx, +, 8], r8
mov qword, ptr, [rcx, +, 16], rdx
mov rax, rcx
add rsp, 56
ret
.LBB0_6:
mov qword, ptr, [rsp, +, 32], rax
mov qword, ptr, [rsp, +, 40], r10
mov qword, ptr, [rsp, +, 48], r9
lea rcx, [rsp, +, 32]
mov edx, 3
call index_many::bound_check_failed
ud2
```
</details>
# Extensions
There are multiple optional extensions to this.
## Indexing With Ranges
This could easily be expanded to allow indexing with `[I; N]` where `I: SliceIndex<Self>`. I wanted to keep the initial implementation simple, so I didn't include it yet.
## Panicking Variant
We could also add this method:
```rust
impl<T> [T] {
fn index_many_mut<const N: usize>(&mut self, indices: [usize; N]) -> [&mut T; N];
}
```
This would work similar to the regular index operator and panic with out-of-bound indices. The advantage would be that we could more easily ensure good codegen with a useful panic message, which is non-trivial with the `Option` variant.
This is implemented in the standalone implementation, and used as basis for the codegen examples here and there.
Rollup of 11 pull requests
Successful merges:
- #103396 (Pin::new_unchecked: discuss pinning closure captures)
- #104416 (Fix using `include_bytes` in pattern position)
- #104557 (Add a test case for async dyn* traits)
- #104559 (Split `MacArgs` in two.)
- #104597 (Probe + better error messsage for `need_migrate_deref_output_trait_object`)
- #104656 (Move tests)
- #104657 (Do not check transmute if has non region infer)
- #104663 (rustdoc: factor out common button CSS)
- #104666 (Migrate alias search result to CSS variables)
- #104674 (Make negative_impl and negative_impl_exists take the right types)
- #104692 (Update test's cfg-if dependency to 1.0)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Probe + better error messsage for `need_migrate_deref_output_trait_object`
1. Use `InferCtxt::probe` in `need_migrate_deref_output_trait_object` -- that normalization *could* technically do type inference as a side-effect, and this is a lint, so it should have no side-effects.
2. Return the trait-ref so we format the error message correctly. See the UI test change -- `(dyn A + 'static)` is not a trait.
Split `MacArgs` in two.
`MacArgs` is an enum with three variants: `Empty`, `Delimited`, and `Eq`. It's used in two ways:
- For representing attribute macro arguments (e.g. in `AttrItem`), where all three variants are used.
- For representing function-like macros (e.g. in `MacCall` and `MacroDef`), where only the `Delimited` variant is used.
In other words, `MacArgs` is used in two quite different places due to them having partial overlap. I find this makes the code hard to read. It also leads to various unreachable code paths, and allows invalid values (such as accidentally using `MacArgs::Empty` in a `MacCall`).
This commit splits `MacArgs` in two:
- `DelimArgs` is a new struct just for the "delimited arguments" case. It is now used in `MacCall` and `MacroDef`.
- `AttrArgs` is a renaming of the old `MacArgs` enum for the attribute macro case. Its `Delimited` variant now contains a `DelimArgs`.
Various other related things are renamed as well.
These changes make the code clearer, avoids several unreachable paths, and disallows the invalid values.
r? `@petrochenkov`
Add a test case for async dyn* traits
This adds a test case that approximates async functions in dyn traits using `dyn*`. The purpose is to have an example of where we are with `dyn*` and the goal of using it for dyn traits.
Issue #102425
r? `@compiler-errors`
Pin::new_unchecked: discuss pinning closure captures
Regardless of how the discussion in https://github.com/rust-lang/rust/pull/102737 turns out, pinning closure captures is super subtle business and probably worth discussing separately.
`MacArgs` is an enum with three variants: `Empty`, `Delimited`, and `Eq`. It's
used in two ways:
- For representing attribute macro arguments (e.g. in `AttrItem`), where all
three variants are used.
- For representing function-like macros (e.g. in `MacCall` and `MacroDef`),
where only the `Delimited` variant is used.
In other words, `MacArgs` is used in two quite different places due to them
having partial overlap. I find this makes the code hard to read. It also leads
to various unreachable code paths, and allows invalid values (such as
accidentally using `MacArgs::Empty` in a `MacCall`).
This commit splits `MacArgs` in two:
- `DelimArgs` is a new struct just for the "delimited arguments" case. It is
now used in `MacCall` and `MacroDef`.
- `AttrArgs` is a renaming of the old `MacArgs` enum for the attribute macro
case. Its `Delimited` variant now contains a `DelimArgs`.
Various other related things are renamed as well.
These changes make the code clearer, avoids several unreachable paths, and
disallows the invalid values.