Compiler & its UI tests: Rename remaining occurrences of "object safe" to "dyn compatible"
Follow-up to #130826.
Part of #130852.
1. 1st commit: Fix stupid oversights. Should've been part of #130826.
2. 2nd commit: Rename the unstable feature `object_safe_for_dispatch` to `dyn_compatible_for_dispatch`. Might not be worth the churn, you decide.
3. 3rd commit: Apply the renaming to all UI tests (contents and paths).
Arbitrary self types v2: pointers feature gate.
The main `arbitrary_self_types` feature gate will shortly be reused for a new version of arbitrary self types which we are amending per [this RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md). The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer support from the current `arbitrary_self_types` feature. We expect this to cause some amount of breakage for crates using this unstable feature to allow raw pointer self types. If that's the case, we want to know about it, and we want crate authors to know of the upcoming changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine that use of raw pointers as self types is common, then we may maintain that as an unstable feature even if we come to stabilize the rest of the `arbitrary_self_types` support in future. If we don't hear that this PR is causing breakage, then perhaps we don't need it at all, even behind an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
The main `arbitrary_self_types` feature gate will shortly be reused for
a new version of arbitrary self types which we are amending per [this
RFC](https://github.com/rust-lang/rfcs/blob/master/text/3519-arbitrary-self-types-v2.md).
The main amendments are:
* _do_ support `self` types which can't safely implement `Deref`
* do _not_ support generic `self` types
* do _not_ support raw pointers as `self` types.
This PR relates to the last of those bullet points: this strips pointer
support from the current `arbitrary_self_types` feature.
We expect this to cause some amount of breakage for crates using this
unstable feature to allow raw pointer self types. If that's the case, we
want to know about it, and we want crate authors to know of the upcoming
changes.
For now, this can be resolved by adding the new
`arbitrary_self_types_pointers` feature to such crates. If we determine
that use of raw pointers as self types is common, then we may maintain
that as an unstable feature even if we come to stabilize the rest of the
`arbitrary_self_types` support in future. If we don't hear that this PR
is causing breakage, then perhaps we don't need it at all, even behind
an unstable feature gate.
[Tracking issue](https://github.com/rust-lang/rust/issues/44874)
This is [step 4 of the plan outlined here](https://github.com/rust-lang/rust/issues/44874#issuecomment-2122179688)
Fix ambiguous cases of multiple & in elided self lifetimes
This change proposes simpler rules to identify the lifetime on `self` parameters which may be used to elide a return type lifetime.
## The old rules
(copied from [this comment](https://github.com/rust-lang/rust/pull/117967#discussion_r1420554242))
Most of the code can be found in [late.rs](https://doc.rust-lang.org/stable/nightly-rustc/src/rustc_resolve/late.rs.html) and acts on AST types. The function [resolve_fn_params](https://doc.rust-lang.org/stable/nightly-rustc/src/rustc_resolve/late.rs.html#2006), in the success case, returns a single lifetime which can be used to elide the lifetime of return types.
Here's how:
* If the first parameter is called self then we search that parameter using "`self` search rules", below
* If no unique applicable lifetime was found, search all other parameters using "regular parameter search rules", below
(In practice the code does extra work to assemble good diagnostic information, so it's not quite laid out like the above.)
### `self` search rules
This is primarily handled in [find_lifetime_for_self](https://doc.rust-lang.org/stable/nightly-rustc/src/rustc_resolve/late.rs.html#2118) , and is described slightly [here](https://github.com/rust-lang/rust/issues/117715#issuecomment-1813115477) already. The code:
1. Recursively walks the type of the `self` parameter (there's some complexity about resolving various special cases, but it's essentially just walking the type as far as I can see)
2. Each time we find a reference anywhere in the type, if the **direct** referent is `Self` (either spelled `Self` or by some alias resolution which I don't fully understand), then we'll add that to a set of candidate lifetimes
3. If there's exactly one such unique lifetime candidate found, we return this lifetime.
### Regular parameter search rules
1. Find all the lifetimes in each parameter, including implicit, explicit etc.
2. If there's exactly one parameter containing lifetimes, and if that parameter contains exactly one (unique) lifetime, *and if we didn't find a `self` lifetime parameter already*, we'll return this lifetime.
## The new rules
There are no changes to the "regular parameter search rules" or to the overall flow, only to the `self` search rules which are now:
1. Recursively walks the type of the `self` parameter, searching for lifetimes of reference types whose referent **contains** `Self`.[^1]
2. Keep a record of:
* Whether 0, 1 or n unique lifetimes are found on references encountered during the walk
4. If no lifetime was found, we don't return a lifetime. (This means other parameters' lifetimes may be used for return type lifetime elision).
5. If there's one lifetime found, we return the lifetime.
6. If multiple lifetimes were found, we abort elision entirely (other parameters' lifetimes won't be used).
[^1]: this prevents us from considering lifetimes from inside of the self-type
## Examples that were accepted before and will now be rejected
```rust
fn a(self: &Box<&Self>) -> &u32
fn b(self: &Pin<&mut Self>) -> &String
fn c(self: &mut &Self) -> Option<&Self>
fn d(self: &mut &Box<Self>, arg: &usize) -> &usize // previously used the lt from arg
```
### Examples that change the elided lifetime
```rust
fn e(self: &mut Box<Self>, arg: &usize) -> &usize
// ^ new ^ previous
```
## Examples that were rejected before and will now be accepted
```rust
fn f(self: &Box<Self>) -> &u32
```
---
*edit: old PR description:*
```rust
struct Concrete(u32);
impl Concrete {
fn m(self: &Box<Self>) -> &u32 {
&self.0
}
}
```
resulted in a confusing error.
```rust
impl Concrete {
fn n(self: &Box<&Self>) -> &u32 {
&self.0
}
}
```
resulted in no error or warning, despite apparent ambiguity over the elided lifetime.
Fixes https://github.com/rust-lang/rust/issues/117715
Go over all structured parser suggestions and make them verbose style.
When suggesting to add or remove delimiters, turn them into multiple suggestion parts.
Warn (or error) when `Self` ctor from outer item is referenced in inner nested item
This implements a warning `SELF_CONSTRUCTOR_FROM_OUTER_ITEM` when a self constructor from an outer impl is referenced in an inner nested item. This is a proper fix mentioned https://github.com/rust-lang/rust/pull/117246#discussion_r1374648388.
This warning is additionally bumped to a hard error when the self type references generic parameters, since it's almost always going to ICE, and is basically *never* correct to do.
This also reverts part of https://github.com/rust-lang/rust/pull/117246, since I believe this is the proper fix and we shouldn't need the helper functions (`opt_param_at`/`opt_type_param`) any longer, since they shouldn't really ever be used in cases where we don't have this problem.
This makes a small change as requested in code review, such that if there's
ambiguity in the self lifetime, we avoid lifetime elision entirely instead of
considering using lifetimes from any of the other parameters.
For example,
impl Something {
fn method(self: &Box<&Self>, something_else: &u32) -> &u32 { ... }
}
in standard Rust would have assumed the return lifetime was that of &Self;
with this PR prior to this commit would have chosen the lifetime of
'something_else', and after this commit would give an error message explaining
that the lifetime is ambiguous.
struct Concrete(u32);
impl Concrete {
fn m(self: &Box<Self>) -> &u32 {
&self.0
}
}
resulted in a confusing error.
impl Concrete {
fn n(self: &Box<&Self>) -> &u32 {
&self.0
}
}
resulted in no error or warning, despite apparent ambiguity over the elided
lifetime.
This commit changes two aspects of the behavior.
Previously, when examining the self type, we considered lifetimes only if they
were immediately adjacent to Self. We now consider lifetimes anywhere in the
self type.
Secondly, if more than one lifetime is discovered in the self type, we
disregard it as a possible lifetime elision candidate.
This is a compatibility break, and in fact has required some changes to tests
which assumed the earlier behavior.
Fixes https://github.com/rust-lang/rust/issues/117715
Do not suggest constraining the `&self` param, but rather the return type.
If that is wrong (because it is not sufficient), a follow up error will tell the
user to fix it. This way we lower the chances of *over* constraining, but still
get the cake of "correctly" contrained in two steps.
This is a correct suggestion:
```
error: lifetime may not live long enough
--> $DIR/ex3-both-anon-regions-return-type-is-anon.rs:9:9
|
LL | fn foo<'a>(&self, x: &i32) -> &i32 {
| - - let's call the lifetime of this reference `'1`
| |
| let's call the lifetime of this reference `'2`
LL | x
| ^ method was supposed to return data with lifetime `'2` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter and update trait if needed
|
LL | fn foo<'a>(&self, x: &'a i32) -> &'a i32 {
| ++ ++
```
While this is incomplete because it should suggestino `&'a self`
```
error: lifetime may not live long enough
--> $DIR/ex3-both-anon-regions-self-is-anon.rs:7:19
|
LL | fn foo<'a>(&self, x: &Foo) -> &Foo {
| - - let's call the lifetime of this reference `'1`
| |
| let's call the lifetime of this reference `'2`
LL | if true { x } else { self }
| ^ method was supposed to return data with lifetime `'2` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter and update trait if needed
|
LL | fn foo<'a>(&self, x: &'a Foo) -> &'a Foo {
| ++ ++
```
but the follow up error is
```
error: lifetime may not live long enough
--> tests/ui/lifetimes/lifetime-errors/ex3-both-anon-regions-self-is-anon.rs:7:30
|
6 | fn foo<'a>(&self, x: &'a Foo) -> &'a Foo {
| -- - let's call the lifetime of this reference `'1`
| |
| lifetime `'a` defined here
7 | if true { x } else { self }
| ^^^^ method was supposed to return data with lifetime `'a` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter and update trait if needed
|
6 | fn foo<'a>(&'a self, x: &'a Foo) -> &'a Foo {
| ++
```
```
error: lifetime may not live long enough
--> $DIR/lt-ref-self.rs:12:9
|
LL | fn ref_self(&self, f: &u32) -> &u32 {
| - - let's call the lifetime of this reference `'1`
| |
| let's call the lifetime of this reference `'2`
LL | f
| ^ method was supposed to return data with lifetime `'2` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter and update trait if needed
|
LL | fn ref_self<'b>(&'b self, f: &'b u32) -> &'b u32 {
| ++++ ++ ++ ++
```
```
error: lifetime may not live long enough
--> f205.rs:8:16
|
7 | fn resolve_symbolic_reference(&self, reference: Option<Reference>) -> Option<Reference> {
| - --------- has type `Option<Reference<'1>>`
| |
| let's call the lifetime of this reference `'2`
8 | return reference;
| ^^^^^^^^^ method was supposed to return data with lifetime `'2` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter
|
7 | fn resolve_symbolic_reference<'a>(&'a self, reference: Option<Reference<'a>>) -> Option<Reference<'a>> {
| ++++ ++ ++++ ++++
```
The correct suggestion would be
```
help: consider introducing a named lifetime parameter
|
7 | fn resolve_symbolic_reference<'a>(&self, reference: Option<Reference<'a>>) -> Option<Reference<'a>> {
| ++++ ++++ ++++
```
but we are not doing the analysis to detect that yet. If we constrain `&'a self`, then the return type with a borrow will implicitly take its lifetime from `'a`, it is better to make it explicit in the suggestion, in case that `&self` *doesn't* need to be `'a`, but the return does.
```
error: lifetime may not live long enough
--> $DIR/ex3-both-anon-regions-both-are-structs-2.rs:7:5
|
LL | fn foo(mut x: Ref, y: Ref) {
| ----- - has type `Ref<'_, '1>`
| |
| has type `Ref<'_, '2>`
LL | x.b = y.b;
| ^^^^^^^^^ assignment requires that `'1` must outlive `'2`
|
help: consider introducing a named lifetime parameter
|
LL | fn foo<'a>(mut x: Ref<'a, 'a>, y: Ref<'a, 'a>) {
| ++++ ++++++++ ++++++++
```
As can be seen above, it currently doesn't try to compare the `ty::Ty` lifetimes that diverged vs the `hir::Ty` to correctly suggest the following
```
help: consider introducing a named lifetime parameter
|
LL | fn foo<'a>(mut x: Ref<'_, 'a>, y: Ref<'_, 'a>) {
| ++++ ++++++++ ++++++++
```
but I believe this to still be an improvement over the status quo.
CC #40990.
On borrow return type, suggest borrowing from arg or owned return type
When we encounter a function with a return type that has an anonymous lifetime with no argument to borrow from, besides suggesting the `'static` lifetime we now also suggest changing the arguments to be borrows or changing the return type to be an owned type.
```
error[E0106]: missing lifetime specifier
--> $DIR/variadic-ffi-6.rs:7:6
|
LL | ) -> &usize {
| ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime, but this is uncommon unless you're returning a borrowed value from a `const` or a `static`
|
LL | ) -> &'static usize {
| +++++++
help: instead, you are more likely to want to change one of the arguments to be borrowed...
|
LL | x: &usize,
| +
help: ...or alternatively, to want to return an owned value
|
LL - ) -> &usize {
LL + ) -> usize {
|
```
Fix#85843.
When we encounter a function with a return type that has an anonymous
lifetime with no argument to borrow from, besides suggesting the
`'static` lifetime we now also suggest changing the arguments to be
borrows or changing the return type to be an owned type.
```
error[E0106]: missing lifetime specifier
--> $DIR/variadic-ffi-6.rs:7:6
|
LL | ) -> &usize {
| ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime, but this is uncommon unless you're returning a borrowed value from a `const` or a `static`
|
LL | ) -> &'static usize {
| +++++++
help: instead, you are more likely to want to change one of the arguments to be borrowed...
|
LL | x: &usize,
| +
help: ...or alternatively, to want to return an owned value
|
LL - ) -> &usize {
LL + ) -> usize {
|
```
Fix#85843.
Rollup of 7 pull requests
Successful merges:
- #116862 (Detect when trait is implemented for type and suggest importing it)
- #117389 (Some diagnostics improvements of `gen` blocks)
- #117396 (Don't treat closures/coroutine types as part of the public API)
- #117398 (Correctly handle nested or-patterns in exhaustiveness)
- #117403 (Poison check_well_formed if method receivers are invalid to prevent typeck from running on it)
- #117411 (Improve some diagnostics around `?Trait` bounds)
- #117414 (Don't normalize to an un-revealed opaque when we hit the recursion limit)
r? `@ghost`
`@rustbot` modify labels: rollup
When we encounter a `dyn Trait` that isn't object safe, look for its
implementors. If there's one, mention using it directly If there are
less than 9, mention the possibility of creating a new enum and using
that instead.
Account for object unsafe `impl Trait on dyn Trait {}`. Make a
distinction between public and sealed traits.
Fix#80194.
Suggest `pin!()` instead of `Pin::new()` when appropriate
When encountering a type that needs to be pinned but that is `!Unpin`, suggest using the `pin!()` macro.
Fix#57994.