When encountering `<&T as Clone>::clone(x)` because `T: Clone`, suggest `#[derive(Clone)]`
CC #40699.
```
warning: call to `.clone()` on a reference in this situation does nothing
--> $DIR/noop-method-call.rs:23:71
|
LL | let non_clone_type_ref_clone: &PlainType<u32> = non_clone_type_ref.clone();
| ^^^^^^^^
|
= note: the type `PlainType<u32>` does not implement `Clone`, so calling `clone` on `&PlainType<u32>` copies the reference, which does not do anything and can be removed
help: remove this redundant call
|
LL - let non_clone_type_ref_clone: &PlainType<u32> = non_clone_type_ref.clone();
LL + let non_clone_type_ref_clone: &PlainType<u32> = non_clone_type_ref;
|
help: if you meant to clone `PlainType<u32>`, implement `Clone` for it
|
LL + #[derive(Clone)]
LL | struct PlainType<T>(T);
|
```
Provide suggestions through `rustc_confusables` annotations
Help with common API confusion, like asking for `push` when the data structure really has `append`.
```
error[E0599]: no method named `size` found for struct `Vec<{integer}>` in the current scope
--> $DIR/rustc_confusables_std_cases.rs:17:7
|
LL | x.size();
| ^^^^
|
help: you might have meant to use `len`
|
LL | x.len();
| ~~~
help: there is a method with a similar name
|
LL | x.resize();
| ~~~~~~
```
Fix#59450 (we can open subsequent tickets for specific cases).
Fix#108437:
```
error[E0599]: `Option<{integer}>` is not an iterator
--> f101.rs:3:9
|
3 | opt.flat_map(|val| Some(val));
| ^^^^^^^^ `Option<{integer}>` is not an iterator
|
::: /home/gh-estebank/rust/library/core/src/option.rs:571:1
|
571 | pub enum Option<T> {
| ------------------ doesn't satisfy `Option<{integer}>: Iterator`
|
= note: the following trait bounds were not satisfied:
`Option<{integer}>: Iterator`
which is required by `&mut Option<{integer}>: Iterator`
help: you might have meant to use `and_then`
|
3 | opt.and_then(|val| Some(val));
| ~~~~~~~~
```
On type error of method call arguments, look at confusables for suggestion. Fix#87212:
```
error[E0308]: mismatched types
--> f101.rs:8:18
|
8 | stuff.append(Thing);
| ------ ^^^^^ expected `&mut Vec<Thing>`, found `Thing`
| |
| arguments to this method are incorrect
|
= note: expected mutable reference `&mut Vec<Thing>`
found struct `Thing`
note: method defined here
--> /home/gh-estebank/rust/library/alloc/src/vec/mod.rs:2025:12
|
2025 | pub fn append(&mut self, other: &mut Self) {
| ^^^^^^
help: you might have meant to use `push`
|
8 | stuff.push(Thing);
| ~~~~
```
remove `sub_relations` from the `InferCtxt`
While doing so, I tried to remove the `delay_span_bug` in `rematch_impl` again, which lead me to discover another `freshen` bug, fixing that one in the second commit. See commit descriptions for the reasoning behind each change.
r? `@compiler-errors`
Do not provide a structured suggestion when the arguments don't match.
```
error[E0599]: no method named `test_mut` found for struct `Vec<{integer}>` in the current scope
--> $DIR/auto-ref-slice-plus-ref.rs:7:7
|
LL | a.test_mut();
| ^^^^^^^^
|
= help: items from traits can only be used if the trait is implemented and in scope
note: `MyIter` defines an item `test_mut`, perhaps you need to implement it
--> $DIR/auto-ref-slice-plus-ref.rs:14:1
|
LL | trait MyIter {
| ^^^^^^^^^^^^
help: there is a method `get_mut` with a similar name, but with different arguments
--> $SRC_DIR/core/src/slice/mod.rs:LL:COL
```
Consider methods beyond inherent ones when suggesting typos.
```
error[E0599]: no method named `owned` found for reference `&dyn Foo` in the current scope
--> $DIR/object-pointer-types.rs:11:7
|
LL | fn owned(self: Box<Self>);
| --------- the method might not be found because of this arbitrary self type
...
LL | x.owned();
| ^^^^^ help: there is a method with a similar name: `to_owned`
```
Fix#101013.
```
error[E0308]: mismatched types
--> $DIR/rustc_confusables_std_cases.rs:20:14
|
LL | x.append(42);
| ------ ^^ expected `&mut Vec<{integer}>`, found integer
| |
| arguments to this method are incorrect
|
= note: expected mutable reference `&mut Vec<{integer}>`
found type `{integer}`
note: method defined here
--> $SRC_DIR/alloc/src/vec/mod.rs:LL:COL
help: you might have meant to use `push`
|
LL | x.push(42);
| ~~~~
```
Help with common API confusion, like asking for `push` when the data structure really has `append`.
```
error[E0599]: no method named `size` found for struct `Vec<{integer}>` in the current scope
--> $DIR/rustc_confusables_std_cases.rs:17:7
|
LL | x.size();
| ^^^^
|
help: you might have meant to use `len`
|
LL | x.len();
| ~~~
help: there is a method with a similar name
|
LL | x.resize();
| ~~~~~~
```
#59450
match lowering: Introduce a `TestCase` enum to replace most matching on `PatKind`
Introduces `TestCase` that represents the specific outcome of a test. It complements `TestKind` which represents a test. In `MatchPair::new()` we select the appropriate `TestCase` for the pattern, and after that we almost never have to inspect the pattern directly during match lowering.
Together with https://github.com/rust-lang/rust/pull/120904, this makes `MatchPair` into a standalone abstraction that hides the details of `thir::Pat`. This will become even truer in the next PR where I make `TestCase` handle or patterns. This opens the door to a lot of future simplifications.
r? `@matthewjasper`
No need to `validate_alias_bound_self_from_param_env` in `assemble_alias_bound_candidates`
We already fully normalize the self type before we reach `assemble_alias_bound_candidates`, so there's no reason to double check that a projection is truly rigid by checking param-env bounds.
I think this is also blocked on us making sure to always normalize opaques: #120549.
r? lcnr
Without doing so we use the same candidate cache entry
for `?0: Trait<?1>` and `?0: Trait<?0>`. These goals are different
and we must not use the same entry for them.
we don't track them when canonicalizing or when freshening,
resulting in instable caching in the old solver, and issues when
instantiating query responses in the new one.
Make intrinsic fallback bodies cross-crate inlineable
This change was prompted by the stage1 compiler spending 4% of its time when compiling the polymorphic-recursion MIR opt test in `unlikely`.
Intrinsic fallback bodies like `unlikely` should always be inlined, it's very silly if they are not. To do this, we enable the fallback bodies to be cross-crate inlineable. Not that this matters for our workloads since the compiler never actually _uses_ the "fallback bodies", it just uses whatever was cfg(bootstrap)ped, so I've also added `#[inline]` to those.
See the comments for more information.
r? oli-obk
Improve codegen diagnostic handling
Clarify the workings of the temporary `Diagnostic` type used to send diagnostics from codegen threads to the main thread.
r? `@estebank`
intrinsics::simd: add missing functions, avoid UB-triggering fast-math
Turns out stdarch declares a bunch more SIMD intrinsics that are still missing from libcore.
I hope I got the docs and in particular the safety requirements right for these "unordered" and "nanless" intrinsics.
Many of these are unused even in stdarch, but they are implemented in the codegen backend, so we may as well list them here.
r? `@Amanieu`
Cc `@calebzulawski` `@workingjubilee`
PR #119097 made the decision to make all `IntoDiagnostic` impls generic,
because this allowed a bunch of nice cleanups. But four hand-written
impls were unintentionally overlooked. This commit makes them generic.
`Rustc::emit_diagnostic` reconstructs a diagnostic passed in from the
macro machinery. Currently it uses the type `DiagnosticBuilder<'_,
ErrorGuaranteed>`, which is incorrect, because the diagnostic might be a
warning. And if it is a warning, because of the `ErrorGuaranteed` we end
up calling into `emit_producing_error_guaranteed` and the assertion
within that function (correctly) fails because the level is not an error
level.
The fix is simple: change the type to `DiagnosticBuilder<'_, ()>`. Using
`()` works no matter what the diagnostic level is, and we don't need an
`ErrorGuaranteed` here.
The panic was reported in #120576.
- Make it more closely match `rustc_errors::Diagnostic`, by making the
field names match, and adding `children`, which requires adding
`rustc_codegen_ssa:🔙:write::Subdiagnostic`.
- Check that we aren't missing important info when converting
diagnostics.
- Add better comments.
- Tweak `rustc_errors::Diagnostic::replace_args` so that we don't need
to do any cloning when converting diagnostics.
First, introduce a typedef `DiagnosticArgMap`.
Second, make the `args` field public, and remove the `args` getter and
`replace_args` setter. These were necessary previously because the getter
had a `#[allow(rustc::potential_query_instability)]` attribute, but that
was removed in #120931 when the args were changed from `FxHashMap` to
`FxIndexMap`. (All the other `Diagnostic` fields are public.)
Unify dylib loading between proc macros and codegen backends
As bonus this makes the errors when failing to load a proc macro more informative to match the backend loading errors. In addition it makes it slightly easier to patch rustc to work on platforms that don't support dynamic linking like wasm.
never patterns: Fix liveness analysis in the presence of never patterns
There's a bunch of code that only looks at the first alternative of an or-pattern, under the assumption that all alternatives have the same set of bindings. This is true except for never pattern alternatives (e.g. `Ok(x) | Err(!)`), so we skip these. I expect there's other code with this problem, I'll have to check that later.
I don't have tests for this yet because mir lowering causes other issues; I'll have some in the next PR.
r? ``@compiler-errors``
coverage: Remove `pending_dups` from the span refiner
When extracting coverage spans from a function's MIR, we need to decide how to handle spans that are associated with more than one node (BCB) in the coverage control flow graph.
The existing code for managing those duplicate spans is very subtle and difficult to modify. But by eagerly deduplicating those extracted spans in a much simpler way, we can remove a massive chunk of complexity from the span refiner.
There is a tradeoff here, in that we no longer try to retain *all* nondominating BCBs that have the same span, only the last one in the (semi-arbitrary) dominance ordering. But in practice, this produces very little difference in our coverage tests, and the simplification is so significant that I think it's worthwhile.
``@rustbot`` label +A-code-coverage
Top level error handling
The interactions between the following things are surprisingly complicated:
- `emit_stashed_diagnostics`,
- `flush_delayed`,
- normal return vs `abort_if_errors`/`FatalError.raise()` unwinding in the call to the closure in `interface::run_compiler`.
This PR disentangles it all.
r? `@oli-obk`
rename ptr::invalid -> ptr::without_provenance
It has long bothered me that `ptr::invalid` returns a pointer that is actually valid for zero-sized memory accesses. In general, it doesn't even make sense to ask "is this pointer valid", you have to ask "is this pointer valid for a given memory access". We could say that a pointer is invalid if it is not valid for *any* memory access, but [the way this FCP is going](https://github.com/rust-lang/unsafe-code-guidelines/issues/472), it looks like *all* pointers will be valid for zero-sized memory accesses.
Two possible alternative names emerged as people's favorites:
1. Something involving `dangling`, in analogy to `NonNull::dangling`. To avoid inconsistency with the `NonNull` method, the address-taking method could be called `dangling_at(addr: usize) -> *const T`.
2. `without_provenance`, to be symmetric with the inverse operation `ptr.addr_without_provenance()` (currently still called `ptr.addr()` but probably going to be renamed)
I have no idea which one of these is better. I read [this comment](https://github.com/rust-lang/rust/pull/117658#issuecomment-1830934701) as expressing a slight preference for something like the second option, so I went for that. I'm happy to go with `dangling_at` as well.
Cc `@rust-lang/opsem`