Fix Async Generator ABI
This change was missed when making async generators implement `Future` directly.
It did not cause any problems in codegen so far, as `GeneratorState<(), Output>`
happens to have the same ABI as `Poll<Output>`.
This change was missed when making async generators implement `Future` directly.
It did not cause any problems in codegen so far, as `GeneratorState<(), Output>`
happens to have the same ABI as `Poll<Output>`.
`mk_const(ty::ConstKind::X(...), ty)` can now be simplified to
`mk_cosnt(..., ty)`.
I searched with the following regex: \mk_const\([\n\s]*(ty::)?ConstKind\
I've left `ty::ConstKind::{Bound, Error}` as-is, they seem clearer this
way.
stricter alignment enforcement for ScalarPair
`@eddyb` [indicated](https://github.com/rust-lang/rust/pull/103926#discussion_r1033315005) that alignment violating this check might be a bug. So let's see what the test suite says.
(Only the 2nd commit actually changes behavior... but I couldn't not do that other cleanup.^^)
Does the PR CI runner even enable debug assertions though...?
Add `ConstKind::Expr`
Starting to implement `ty::ConstKind::Abstract`, most of the match cases are stubbed out, some I was unsure what to add, others I didn't want to add until a more complete implementation was ready.
r? `@lcnr`
Initial pass at expr/abstract const/s
Address comments
Switch to using a list instead of &[ty::Const], rm `AbstractConst`
Remove try_unify_abstract_consts
Update comments
Add edits
Recurse more
More edits
Prevent equating associated consts
Move failing test to ui
Changes this test from incremental to ui, and mark it as failing and a known bug.
Does not cause the compiler to ICE, so should be ok.
Make rustc_target usable outside of rustc
I'm working on showing type size in rust-analyzer (https://github.com/rust-lang/rust-analyzer/pull/13490) and I currently copied rustc code inside rust-analyzer, which works, but is bad. With this change, I would become able to use `rustc_target` and `rustc_index` directly in r-a, reducing the amount of copy needed.
This PR contains some feature flag to put nightly features behind them to make crates buildable on the stable compiler + makes layout related types generic over index type + removes interning of nested layouts.
Previously, async constructs would be lowered to "normal" generators,
with an additional `from_generator` / `GenFuture` shim in between to
convert from `Generator` to `Future`.
The compiler will now special-case these generators internally so that
async constructs will *directly* implement `Future` without the need
to go through the `from_generator` / `GenFuture` shim.
The primary motivation for this change was hiding this implementation
detail in stack traces and debuginfo, but it can in theory also help
the optimizer as there is less abstractions to see through.
Support using `Self` or projections inside an RPIT/async fn
I reuse the same idea as https://github.com/rust-lang/rust/pull/103449 to use variances to encode whether a lifetime parameter is captured by impl-trait.
The current implementation of async and RPIT replace all lifetimes from the parent generics by `'static`. This PR changes the scheme
```rust
impl<'a> Foo<'a> {
fn foo<'b, T>() -> impl Into<Self> + 'b { ... }
}
opaque Foo::<'_a>::foo::<'_b, T>::opaque<'b>: Into<Foo<'_a>> + 'b;
impl<'a> Foo<'a> {
// OLD
fn foo<'b, T>() -> Foo::<'static>::foo::<'static, T>::opaque::<'b> { ... }
^^^^^^^ the `Self` becomes `Foo<'static>`
// NEW
fn foo<'b, T>() -> Foo::<'a>::foo::<'b, T>::opaque::<'b> { ... }
^^ the `Self` stays `Foo<'a>`
}
```
There is the same issue with projections. In the example, substitute `Self` by `<T as Trait<'b>>::Assoc` in the sugared version, and `Foo<'_a>` by `<T as Trait<'_b>>::Assoc` in the desugared one.
This allows to support `Self` in impl-trait, since we do not replace lifetimes by `'static` any more. The same trick allows to use projections like `T::Assoc` where `Self` is allowed. The feature is gated behind a `impl_trait_projections` feature gate.
The implementation relies on 2 tweaking rules for opaques in 2 places:
- we only relate substs that correspond to captured lifetimes during TypeRelation;
- we only list captured lifetimes in choice region computation.
For simplicity, I encoded the "capturedness" of lifetimes as a variance, `Bivariant` vs `Invariant` for unused vs captured lifetimes. The `variances_of` query used to ICE for opaques.
Impl-trait that do not reference `Self` or projections will have their variances as:
- `o` (invariant) for each parent type or const;
- `*` (bivariant) for each parent lifetime --> will not participate in borrowck;
- `o` (invariant) for each own lifetime.
Impl-trait that does reference `Self` and/or projections will have some parent lifetimes marked as `o` (as the example above), and participate in type relation and borrowck. In the example above, `variances_of(opaque) = ['_a: o, '_b: *, T: o, 'b: o]`.
r? types
cc `@compiler-errors` , as you asked about the issue with `Self` and projections.
Accept `TyCtxt` instead of `TyCtxtAt` in `Ty::is_*` functions
Functions in answer:
- `Ty::is_freeze`
- `Ty::is_sized`
- `Ty::is_unpin`
- `Ty::is_copy_modulo_regions`
This allows to remove a lot of useless `.at(DUMMY_SP)`, making the code a bit nicer :3
r? `@compiler-errors`
spastorino noticed some silly expressions like `item_id.def_id.def_id`.
This commit renames several `def_id: OwnerId` fields as `owner_id`, so
those expressions become `item_id.owner_id.def_id`.
`item_id.owner_id.local_def_id` would be even clearer, but the use of
`def_id` for values of type `LocalDefId` is *very* widespread, so I left
that alone.