This PR stabilizes the `#[diagnostic]` attribute namespace and a minimal
option of the `#[diagnostic::on_unimplemented]` attribute.
The `#[diagnostic]` attribute namespace is meant to provide a home for
attributes that allow users to influence error messages emitted by the
compiler. The compiler is not guaranteed to use any of this hints,
however it should accept any (non-)existing attribute in this namespace
and potentially emit lint-warnings for unused attributes and options.
This is meant to allow discarding certain attributes/options in the
future to allow fundamental changes to the compiler without the need to
keep then non-meaningful options working.
The `#[diagnostic::on_unimplemented]` attribute is allowed to appear
on a trait definition. This allows crate authors to hint the compiler
to emit a specific error message if a certain trait is not implemented.
For the `#[diagnostic::on_unimplemented]` attribute the following
options are implemented:
* `message` which provides the text for the top level error message
* `label` which provides the text for the label shown inline in the
broken code in the error message
* `note` which provides additional notes.
The `note` option can appear several times, which results in several
note messages being emitted. If any of the other options appears several
times the first occurrence of the relevant option specifies the actually
used value. Any other occurrence generates an lint warning. For any
other non-existing option a lint-warning is generated.
All three options accept a text as argument. This text is allowed to
contain format parameters referring to generic argument or `Self` by
name via the `{Self}` or `{NameOfGenericArgument}` syntax. For any
non-existing argument a lint warning is generated.
Tracking issue: #111996
If we abort immediately after complaining about the obsolete `impl Trait
for ..` syntax, then we avoid reaching HIR lowering. This means we can
use `TyKind::Dummy` instead of `TyKind::Err`.
Currently many diagnostic modifier methods are available on both
`Diagnostic` and `DiagnosticBuilder`. This commit removes most of them
from `Diagnostic`. To minimize the diff size, it keeps them within
`diagnostic.rs` but changes the surrounding `impl Diagnostic` block to
`impl DiagnosticBuilder`. (I intend to move things around later, to give
a more sensible code layout.)
`Diagnostic` keeps a few methods that it still needs, like `sub`,
`arg`, and `replace_args`.
The `forward!` macro, which defined two additional methods per call
(e.g. `note` and `with_note`), is replaced by the `with_fn!` macro,
which defines one additional method per call (e.g. `with_note`). It's
now also only used when necessary -- not all modifier methods currently
need a `with_*` form. (New ones can be easily added as necessary.)
All this also requires changing `trait AddToDiagnostic` so its methods
take `DiagnosticBuilder` instead of `Diagnostic`, which leads to many
mechanical changes. `SubdiagnosticMessageOp` gains a type parameter `G`.
There are three subdiagnostics -- `DelayedAtWithoutNewline`,
`DelayedAtWithNewline`, and `InvalidFlushedDelayedDiagnosticLevel` --
that are created within the diagnostics machinery and appended to
external diagnostics. These are handled at the `Diagnostic` level, which
means it's now hard to construct them via `derive(Diagnostic)`, so
instead we construct them by hand. This has no effect on what they look
like when printed.
There are lots of new `allow` markers for `untranslatable_diagnostics`
and `diagnostics_outside_of_impl`. This is because
`#[rustc_lint_diagnostics]` annotations were present on the `Diagnostic`
modifier methods, but missing from the `DiagnosticBuilder` modifier
methods. They're now present.
This makes it more like `hir::TyKind::Err`, and avoids a
`span_delayed_bug` call in `LoweringContext::lower_ty_direct`.
It also requires adding `ast::TyKind::Dummy`, now that
`ast::TyKind::Err` can't be used for that purpose in the absence of an
error emission.
There are a couple of cases that aren't as neat as I would have liked,
marked with `FIXME` comments.
Provide more suggestions on invalid equality where bounds
```
error: equality constraints are not yet supported in `where` clauses
--> $DIR/equality-bound.rs:50:9
|
LL | IntoIterator::Item = A
| ^^^^^^^^^^^^^^^^^^^^^^ not supported
|
= note: see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information
help: if `IntoIterator::Item` is an associated type you're trying to set, use the associated type binding syntax
|
LL ~ fn from_iter<T: IntoIterator<Item = A>>(_: T) -> Self
LL ~
|
error: equality constraints are not yet supported in `where` clauses
--> $DIR/equality-bound.rs:63:9
|
LL | T::Item = A
| ^^^^^^^^^^^ not supported
|
= note: see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information
help: if `IntoIterator::Item` is an associated type you're trying to set, use the associated type binding syntax
|
LL ~ fn from_iter<T: IntoIterator<Item = A>>(_: T) -> Self
LL ~
|
```
Fix#68982.
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
```
error: equality constraints are not yet supported in `where` clauses
--> $DIR/equality-bound.rs:50:9
|
LL | IntoIterator::Item = A,
| ^^^^^^^^^^^^^^^^^^^^^^ not supported
|
= note: see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information
help: if `IntoIterator::Item` is an associated type you're trying to set, use the associated type binding syntax
|
LL ~ fn from_iter<T: IntoIterator<Item = A>>(_: T) -> Self
LL | where
LL ~
|
error: equality constraints are not yet supported in `where` clauses
--> $DIR/equality-bound.rs:63:9
|
LL | T::Item = A,
| ^^^^^^^^^^^ not supported
|
= note: see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information
help: if `IntoIterator::Item` is an associated type you're trying to set, use the associated type binding syntax
|
LL ~ fn from_iter<T: IntoIterator<Item = A>>(_: T) -> Self
LL | where
LL ~
|
```
Fix#68982.
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
Suggest Upgrading Compiler for Gated Features
This PR addresses #117318
I have a few questions:
1. Do we want to specify the current version and release date of the compiler? I have added this in via environment variables, which I found in the code for the rustc cli where it handles the `--version` flag
a. How can I handle the changing message in the tests?
3. Do we want to only show this message when the compiler is old?
a. How can we determine when the compiler is old?
I'll wait until we figure out the message to bless the tests
Allow `~const` on associated type bounds again
This follows from [this Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/419616-t-compiler.2Fproject-const-traits/topic/projections.20on.20.28~.29const.20Trait.20.26.20.28~.29const.20assoc.20ty.20bounds).
Basically in my opinion, it makes sense to allow `~const` on associated type bounds again since they're quite useful even though we haven't implemented the proposed syntax `<Ty as ~const Trait>::Proj`/`<Ty as const Trait>::Proj` yet; that can happen as a follow-up.
This already allows more code to compile since `T::Assoc` where `T` is a type parameter and where the predicate `<T as ~const Trait>` is in the environment gets elaborated to (pseudo) `<T as ~const Trait>::Assoc`.
```rs
#[const_trait]
trait Trait {
type Assoc: ~const Trait;
fn func() -> i32;
}
const fn function<T: ~const Trait>() -> i32 {
T::Assoc::func()
}
```
`~const` associated type bounds also work together with `const` bounds:
```rs
struct Type<const N: i32>;
fn procedure<T: const Trait>() -> Type<{ T::Assoc::func() }> { // `Trait` comes from above
Type
}
```
NB: This PR also starts allowing `~const` bounds in the generics and the where-clause of trait associated types since it's trivial to support them. However, I don't know if those bounds are actually useful. Maybe we should continue to reject them?
For reference, it wouldn't make any sense to allow `~const Trait` in GACs (generic associated constants, `generic_const_items`) because they'd be absolutely useless (contrary to `const Trait`).
~~[``@]rustbot`` ping project-const-traits~~
r? project-const-traits
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
Add support for `for await` loops
This adds support for `for await` loops. This includes parsing, desugaring in AST->HIR lowering, and adding some support functions to the library.
Given a loop like:
```rust
for await i in iter {
...
}
```
this is desugared to something like:
```rust
let mut iter = iter.into_async_iter();
while let Some(i) = loop {
match core::pin::Pin::new(&mut iter).poll_next(cx) {
Poll::Ready(i) => break i,
Poll::Pending => yield,
}
} {
...
}
```
This PR also adds a basic `IntoAsyncIterator` trait. This is partly for symmetry with the way `Iterator` and `IntoIterator` work. The other reason is that for async iterators it's helpful to have a place apart from the data structure being iterated over to store state. `IntoAsyncIterator` gives us a good place to do this.
I've gated this feature behind `async_for_loop` and opened #118898 as the feature tracking issue.
r? `@compiler-errors`
Refactor AST trait bound modifiers
Instead of having two types to represent trait bound modifiers in the parser / the AST (`parser::ty::BoundModifiers` & `ast::TraitBoundModifier`), only to map one to the other later, just use `parser::ty::BoundModifiers` (moved & renamed to `ast::TraitBoundModifiers`).
The struct type is more extensible and easier to deal with (see [here](https://github.com/rust-lang/rust/pull/119099/files#r1430749981) and [here](https://github.com/rust-lang/rust/pull/119099/files#r1430752116) for context) since it more closely models what it represents: A compound of two kinds of modifiers, constness and polarity. Modeling this as an enum (the now removed `ast::TraitBoundModifier`) meant one had to add a new variant per *combination* of modifier kind, which simply isn't scalable and which lead to a lot of explicit non-DRY matches.
NB: `hir::TraitBoundModifier` being an enum is fine since HIR doesn't need to worry representing invalid modifier kind combinations as those get rejected during AST validation thereby immensely cutting down the number of possibilities.
Simple modification of `non_lifetime_binders`'s diagnostic information to adapt to type binders
fixes#119067
Replace diagnostic information "lifetime bounds cannot be used in this context" to "bounds cannot be used in this context".
```rust
#![allow(incomplete_features)]
#![feature(non_lifetime_binders)]
trait Trait {}
trait Trait2
where for <T: Trait> ():{}
//~^ ERROR bounds cannot be used in this context
```
Properly reject `default` on free const items
Fixes#117791.
Technically speaking, this is a breaking change but I doubt it will lead to any real-world regressions (maybe in some macro-trickery crates?). Doing a crater run probably isn't worth it.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Stabilize C string literals
RFC: https://rust-lang.github.io/rfcs/3348-c-str-literal.html
Tracking issue: https://github.com/rust-lang/rust/issues/105723
Documentation PR (reference manual): https://github.com/rust-lang/reference/pull/1423
# Stabilization report
Stabilizes C string and raw C string literals (`c"..."` and `cr#"..."#`), which are expressions of type [`&CStr`](https://doc.rust-lang.org/stable/core/ffi/struct.CStr.html). Both new literals require Rust edition 2021 or later.
```rust
const HELLO: &core::ffi::CStr = c"Hello, world!";
```
C strings may contain any byte other than `NUL` (`b'\x00'`), and their in-memory representation is guaranteed to end with `NUL`.
## Implementation
Originally implemented by PR https://github.com/rust-lang/rust/pull/108801, which was reverted due to unintentional changes to lexer behavior in Rust editions < 2021.
The current implementation landed in PR https://github.com/rust-lang/rust/pull/113476, which restricts C string literals to Rust edition >= 2021.
## Resolutions to open questions from the RFC
* Adding C character literals (`c'.'`) of type `c_char` is not part of this feature.
* Support for `c"..."` literals does not prevent `c'.'` literals from being added in the future.
* C string literals should not be blocked on making `&CStr` a thin pointer.
* It's possible to declare constant expressions of type `&'static CStr` in stable Rust (as of v1.59), so C string literals are not adding additional coupling on the internal representation of `CStr`.
* The unstable `concat_bytes!` macro should not accept `c"..."` literals.
* C strings have two equally valid `&[u8]` representations (with or without terminal `NUL`), so allowing them to be used in `concat_bytes!` would be ambiguous.
* Adding a type to represent C strings containing valid UTF-8 is not part of this feature.
* Support for a hypothetical `&Utf8CStr` may be explored in the future, should such a type be added to Rust.
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Deny more `~const` trait bounds
thereby fixing a family of ICEs (delayed bugs) for `feature(const_trait_impl, effects)` code.
As discussed
r? `@fee1-dead`
The debug probably isn't useful, and assigning all the `$foo`
metavariables to `foo` variables is verbose and weird. Also, `$x:expr`
usually doesn't have a space after the `:`.
C-variadic error improvements
A couple improvements for c-variadic errors:
1. Fix the bad-c-variadic error being emitted multiple times. If a function incorrectly contains multiple `...` args, and is also not foreign or `unsafe extern "C"`, only emit the latter error once rather than once per `...`.
2. Explicitly reject `const` C-variadic functions. Trying to use C-variadics in a const function would previously fail with an error like "destructor of `VaListImpl<'_>` cannot be evaluated at compile-time". Add an explicit check for const C-variadics to provide a clearer error: "functions cannot be both `const` and C-variadic". This also addresses one of the concerns in https://github.com/rust-lang/rust/issues/44930: "Ensure that even when this gets stabilized for regular functions, it is still rejected on const fn."
Trying to use C-variadics in a const function would previously fail with
an error like "destructor of `VaListImpl<'_>` cannot be evaluated at
compile-time".
Add an explicit check for const C-variadics to provide a clearer error:
"functions cannot be both `const` and C-variadic".
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
It's a better name, and lets "active features" refer to the features
that are active in a particular program, due to being declared or
enabled by the edition.
The commit also renames `Features::enabled` as `Features::active` to
match this; I changed my mind and have decided that "active" is a little
better thatn "enabled" for this, particularly because a number of
pre-existing comments use "active" in this way.
Finally, the commit renames `Status::Stable` as `Status::Accepted`, to
match `ACCEPTED_FEATURES`.
Previously, any associated function could have `~const` trait bounds on
generic parameters, which could lead to ICEs when these bounds were used
on associated functions of non-`#[const_trait] trait` or
non-`impl const` blocks.
Includes changes as per @fee1-dead's comments in #116210.
It had a really confusing name by shadowing the previous name, which has
caused issues in the past where people added their new syntax in the
legacy location.
This makes it clear.
There was an incomplete version of the check in parsing and a second
version in AST validation. This meant that some, but not all, invalid
uses were allowed inside macros/disabled cfgs. It also means that later
passes have a hard time knowing when the let expression is in a valid
location, sometimes causing ICEs.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a
valid location.
- Suppress later errors and MIR construction for invalid let
expressions.
Parse unnamed fields and anonymous structs or unions (no-recovery)
It is part of #114782 which implements #49804. Only parse anonymous structs or unions in struct field definition positions.
r? `@petrochenkov`
Anonymous structs or unions are only allowed in struct field
definitions.
Co-authored-by: carbotaniuman <41451839+carbotaniuman@users.noreply.github.com>
Rollup of 5 pull requests
Successful merges:
- #111741 (Use `ObligationCtxt` in custom type ops)
- #111840 (Expose more information in `get_body_with_borrowck_facts`)
- #111876 (Roll compiler_builtins to 0.1.92)
- #111912 (Use `Option::is_some_and` and `Result::is_ok_and` in the compiler )
- #111915 (libtest: Improve error when missing `-Zunstable-options`)
r? `@ghost`
`@rustbot` modify labels: rollup
Implement negative bounds for internal testing purposes
Implements partial support the `!` negative polarity on trait bounds. This is incomplete, but should allow us to at least be able to play with the feature.
Not even gonna consider them as a public-facing feature, but I'm implementing them because would've been nice to have in UI tests, for example in #110671.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
Split out a separate feature gate for impl trait in associated types
in https://github.com/rust-lang/rust/issues/107645 it was decided that we'll take a new route for type alias impl trait. The exact route isn't clear yet, so while I'm working on implementing some of these proposed changes (e.g. in https://github.com/rust-lang/rust/pull/110010) to be able to experiment with them, I will also work on stabilizing another sugar version first: impl trait in associated types. Similarly I'll look into creating feature gates for impl trait in const/static types.
This PR does nothing but split the feature gate, so that you need to enable a different feature gate for
```rust
impl Trait for Type {
type Assoc = impl SomeTrait;
}
```
than what you need for `type Foo = impl SomeTrait;`
Remove `..` from return type notation
`@nikomatsakis` and I decided that using `..` in the return-type notation syntax is probably overkill.
r? `@eholk` since you reviewed the last one
Since this is piggybacking now totally off of a pre-existing syntax (parenthesized generics), let me know if you need any explanation of the logic here, since it's a bit more complicated now.
Update `error [E0449]: unnecessary visibility qualifier` to be more clear
This updates the error message `error[E0449]: unnecessary visibility qualifier` by clearly indicating that visibility qualifiers already inherit their visibility from a parent item. The error message previously implied that the qualifiers were permitted, which is not the case anymore.
Resolves#109822.
Emit feature error for parenthesized generics in associated type bounds
We don't actually do AST->HIR lowering with some `-Zunpretty` flags, so it's not correct to just delay a bug instead of emitting a feature error.
Some diagnostics regressed because of the new errors, but oh well. 🤷Fixes#109898
Remove `box_syntax`
r? `@Nilstrieb`
This removes the feature `box_syntax`, which allows the use of `box <expr>` to create a Box, and finalises removing use of the feature from the compiler. `box_patterns` (allowing the use of `box <pat>` in a pattern) is unaffected.
It also removes `ast::ExprKind::Box` - the only way to create a 'box' expression now is with the rustc-internal `#[rustc_box]` attribute.
As a temporary measure to help users move away, `box <expr>` now parses the inner expression, and emits a `MachineApplicable` lint to replace it with `Box::new`
Closes#49733
Gate usages of `dyn*` and const closures in macros
We silently accepted `dyn*` and const closures in macros as long as they didn't expand to anything containing these experimental features, unlike other gated features such as `for<'a>` binders on closures, etc. Let's not do that, to make sure nobody begins relying on this.
This makes it easier to open the messages file while developing on features.
The commit was the result of automatted changes:
for p in compiler/rustc_*; do mv $p/locales/en-US.ftl $p/messages.ftl; rmdir $p/locales; done
for p in compiler/rustc_*; do sed -i "s#\.\./locales/en-US.ftl#../messages.ftl#" $p/src/lib.rs; done